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Apparent anisotropy in inhomogeneous isotropic media
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S U M M A R Y
Surface waves propagating through a laterally inhomogeneous medium undergo wavefield
complications such as multiple scattering, wave front healing, and backward scattering. Unless
accounted for accurately, these effects will introduce a systematic isotropic bias in estimates
of azimuthal anisotropy. We demonstrate with synthetic experiments that backward scattering
near an observing station will introduce an apparent 360◦ periodicity into the azimuthal distri-
bution of anisotropy near strong lateral variations in seismic wave speeds that increases with
period. Because it violates reciprocity, this apparent 1ψ anisotropy, where ψ is the azimuthal
angle, is non-physical for surface waves and is, therefore, a useful indicator of isotropic bias.
Isotropic bias of the 2ψ (180◦ periodicity) component of azimuthal anisotropy, in contrast, is
caused mainly by wave front healing, which results from the broad forward scattering part of
the surface wave sensitivity kernel. To test these predictions, we apply geometrical ray theoretic
(eikonal) tomography to teleseismic Rayleigh wave measurements across the Transportable
Array component of USArray to measure the directional dependence of phase velocities be-
tween 30 and 80 s period. Eikonal tomography accounts for multiple scattering (ray bending)
but not finite frequency effects such as wave front healing or backward scattering. At long
periods (>50 s), consistent with the predictions from the synthetic experiments, a significant
1ψ component of azimuthal anisotropy is observed near strong isotropic structural contrasts
with fast directions that point in the direction of increasing phase speeds. The observed 2ψ

component of azimuthal anisotropy is more weakly correlated with synthetic predictions of
isotropic bias, probably because of the imprint of intrinsic structural anisotropy. The obser-
vation of a 1ψ component of azimuthal anisotropy is a clear indicator of isotropic bias in
the inversion caused by unmodelled backward scattering and can dominate and mask the 2ψ

signal. Observers are encouraged to estimate and report 1ψ anisotropy in their inversions for
azimuthal anisotropy, to model finite frequency effects using methods that are tailored to the
method of measurement, and to estimate 1ψ and 2ψ anisotropy simultaneously.

Key words: Surface waves and free oscillations; Seismic anisotropy; Seismic tomography;
Wave scattering and diffraction.

1 I N T RO D U C T I O N

Surface waves provide valuable and in some cases unique infor-
mation about the seismic velocity structure of the crust and upper-
most mantle. Recent deployments of large-scale seismic arrays,
such as the USArray Transportable Array in the United States
(Fig. 1), present the potential to produce high resolution images
of both isotropic (e.g. Yang et al. 2008; Moschetti et al. 2010b)
and anisotropic structures (e.g. Moschetti et al. 2010a; Lin et al.
2011). Due to strong heterogeneity at shallow depths, however,
wavefield complications such as multiple scattering or ray bend-
ing (e.g. Lin et al. 2009), wave front healing (e.g. Nolet & Dahlen
2000), and backward scattering (e.g. Snieder 1986) can significantly
affect the accuracy of surface wave tomography. This is particularly

true for azimuthal anisotropy, which has a relatively weak second-
order effect on observations, and may be subject to both random
and systematic bias from the stronger isotropic heterogeneities.

Wavefield complexities, in general, are most important when the
wavelength of a wave is comparable to or greater than the scale
of heterogeneity. In this case, ray theory breaks down. Numerous
theoretical and numerical studies (e.g. Wielandt 1993; Friederich
et al. 2000; Bodin & Maupin 2008) have shown that the apparent
phase velocity (sometimes referred to as dynamic phase veloc-
ity) inferred from phase traveltime measurements with ray theory
can differ substantially from the structural phase velocity. Recent
work by Bodin & Maupin (2008), in particular, demonstrates the
potential bias that isotropic heterogeneities can impart to measure-
ments of (apparent) azimuthal anisotropy. These authors showed that

C© 2011 The Authors 1
Geophysical Journal International C© 2011 RAS

Geophysical Journal International



2 F.-C. Lin and M. H. Ritzwoller

Figure 1. The USArray Transportable Array (TA) stations used in this study
are identified by black triangles. The two stars identify locations used later
in the paper. Red lines mark the tectonic boundaries in the western United
States. CAS, Cascade Range; SNR, Snake River Plain; CP, Colorado Plateau.

azimuthal variations with a 360◦, 180◦ and 90◦ periodicity (i.e. 1ψ ,
2ψ , 4ψ components, where ψ is azimuth) can be introduced in
the presence of an isotropic velocity anomaly due to effects such
as reflection and wave front healing. We refer to such effects as
‘isotropic bias’, which produces an ‘apparent anisotropy’.

This study begins with simulations designed to estimate the ef-
fects of isotropic phase velocity anomalies on phase velocity mea-
surements obtained with USArray data in the western United States.
The simulations will be based on recently observed isotropic phase
speed maps based on Helmholtz tomography (Lin & Ritzwoller
2011). Although any observed phase speed map is imperfect, we
believe that the anomalies are approximately correct, particularly
for the major structures across the region. Focus will be at periods
of 40 s and above, where, as we will show here, isotropic bias is
largest. The simulations are followed by applying a ray theoretic
inversion to real data. The method applied is eikonal tomography
(Lin et al. 2009), which we use here to obtain directionally depen-
dent phase velocity measurements for Rayleigh waves between 30-
and 80-s period across the western United States based on data from
USArray (Fig. 1). The eikonal tomography method first tracks phase
fronts across the entire array to determine the phase traveltime map
for each earthquake and then estimates both the direction and phase
velocity at each location based on the eikonal equation

k̂i (r)

c′
i (r)

∼= ∇τi (r), (1)

where i is the earthquake index, k̂ is the unit wavenumber vector,
τ is the phase traveltime and c′ is the apparent phase velocity.
The eikonal equation is derived from the Helmholtz equation (e.g.
Wielandt 1993)

1

ci (r)2
= |∇τi (r)|2 − ∇2 Ai (r)

Ai (r)ω2
, (2)

where c is the structural phase velocity, A is the amplitude, and ω is

the angular frequency. The structural and apparent phase velocities
are approximately equal (c′ ∼= c) when either the amplitude varia-
tion of the wave is small or frequency is high enough so that the
amplitude-dependent term in eq. (2) can be neglected.

While the eikonal tomography method was developed for and was
originally applied to ambient noise cross-correlation measurements
(Bensen et al. 2007; Lin et al. 2008) by Lin et al. (2009), the method
can be applied to earthquake measurements in a straightforward
way (Lin et al. 2011). Here, we use data following more than 700
earthquakes. Segregating by propagation direction and averaging
provides estimates of the azimuthal distribution of phase velocity
for Rayleigh waves. Although these estimates are robust, we present
evidence that they are biased by isotropic anomalies in a way that
grows with period. Aspects of isotropic bias for ambient noise
tomography are discussed by Ritzwoller et al. (2011).

In both the simulations and inversions with real data, we find
that spurious 1ψ signals are particularly strong near the edges of
strong velocity contrasts at long periods (>50 s). The observed 1ψ

anisotropy pattern is, in fact, consistent with predictions from the
simulations based on finite frequency kernels with strong backward
scattering. Although body waves do have intrinsic 1ψ anisotropy
that can affect surface wave measurements through mode coupling
(Sieminski et al. 2007, 2009), this apparent 1ψ anisotropy of the
inverted local surface wave phase velocity is non-physical (Chen &
Tromp 2007), as it violates the principle of reciprocity. Thus, the
observation of 1ψ anisotropy is a ‘smoking gun” that presents clear
evidence for isotropic bias in azimuthal anisotropy measurements.
Although bias in the 2ψ component of anisotropy is harder to eval-
uate due to the presence of intrinsic anisotropy with this azimuthal
periodicity, we present evidence for the existence of bias at long
periods (>60 s) due to the effects of wave front healing. At peri-
ods below about 60 s, however, isotropic bias of 2ψ anisotropy is
relatively weaker. Thus, Lin et al. (2011) combined earthquake and
ambient noise dispersion measurements at periods below 54 s to
model azimuthal anisotropy in the western United States. A study
of how amplitude information can be used to reduce isotropic bias
by applying the Helmholtz equation (eq. 2) directly is presented in
a separate contribution (Lin & Ritzwoller 2011).

The outline of this paper is as follows. In Section 2, we present
simulations to determine the probable patterns of 1ψ and 2ψ

bias based on finite frequency kernels. In addition, we investigate
whether biases arise from forward scattering effects that may poten-
tially occur far from the observing station, such as wave front heal-
ing, or near-station effects such as backward scattering. In Section 3,
we present the result of applying eikonal tomography to earthquake
measurements across the western United States. In Section 4, we
discuss the period dependence of both the 1ψ and 2ψ components
of azimuthal anisotropy and also discuss the implications. In Sec-
tion 5, we conclude with a discussion of the challenges that must
be addressed in order to obtain reliable structural anisotropy infor-
mation.

2 S I M U L AT I O N O F I S O T RO P I C B I A S

To predict the effect of isotropic bias on measurements of surface
wave azimuthal anisotropy that are interpreted ray-theoretically,
we perform synthetic tests based on recent isotropic phase velocity
maps observed across the western United States with the Helmholtz
tomography method (e.g. Fig. 2a; Lin & Ritzwoller 2011). Differ-
ent from ray theoretically based eikonal tomography, Helmholtz
tomography, which estimates the local phase velocity by solving
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Figure 2. (a) The phase velocity map for the 60 s Rayleigh wave based on Helmholtz tomography (Lin & Ritzwoller 2011) used as the input model for
the synthetic tests. (b) Example of the 60 s Rayleigh wave non-oscillatory, flat-topped finite frequency kernel used in the simulations. This kernel is for TA
station Q22A (Crested Butte, Gunnison, CO) for an event in the northwest direction. The green area near the station defines the backward scattering region,
which is separated from the broad region of forward scattering. The insert shows a blow up of the region near the station. (c) The 60 s Rayleigh wave phase
traveltime map determined from the synthetic phase traveltime measurements across the array (triangles) for an event in the northwestern direction. Contours
are separated by 60 s intervals. The arrow indicates the direction of wave propagation. (d) The apparent phase velocity derived from (c) based on the eikonal
equation (eq. 1). The Snake River Plain low velocity anomaly shifts toward the northwest, opposite to the direction of wave propagation.

the Helmholtz equation (eq. 2), accounts for finite frequency effects
and resolves the structural phase velocity more accurately. Simu-
lated events at a distance of 90◦ from the centre of the observing
array, each separated by 10◦ in azimuth, are used to synthesize phase
traveltime measurements across the USArray stations (Fig 1). We
adopt the non-oscillatory, flat-topped finite frequency kernels (e.g.
Fig. 2b) similar to those described by Ritzwoller et al. (2002) to esti-
mate traveltime perturbations due to structural perturbations within
the region. For each event-station pair, the region with non-zero
sensitivity (x) is defined by |� – (�1 + �2)| < 3c0T0/8, where �,

�1 and �2 are the distances between the event and receiver, the
event and position x, and the receiver and x, respectively. c0 is the
reference phase speed (the average of the input model) and T0 is
the period. Where the kernel is non-zero, the sensitivity is constant
for each cross-section perpendicular to the straight ray path and is
set equal to 1/Rc0, where R is the width of the sensitivity zone for
that cross-section. To avoid infinite values of the kernel, when R <

20 km we set it equal to 20 km.
Note that the kernel extends slightly beyond the station location

in the direction of wave propagation. We refer to this as backward
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scattering region in contrast to the rest of the kernel, which is
the forward scattering region (Fig. 2b). The presence of back-
ward scattering sensitivity is justified when backward scattering sig-
nals interfere with and are indistinguishable from the main arrival.
Ritzwoller et al. (2002) truncated the sensitivity kernels to include
only the forward scattering region, but we include the backward
scattering part of the kernel here. This zone is very small; for exam-
ple, if c0T0 ∼ 240 km, the backward scattering zone extends only
∼45 km past the station. It may, therefore, be somewhat surprising
that it makes such an important contribution to isotropic bias.

The non-oscillatory, flat-topped kernels used in our simulations
are clearly an oversimplification of the complexity of the forward
problem. In particular, the kernels do not depend on azimuth and fo-
cal mechanism, do not account for multiple scattering effects which
can be important for wave front healing due to strong structural
anomalies (Malcolm & Trampert 2011), and are probably too wide
in the transverse direction (Yoshizawa & Kennett 2002; Zhou et al.
2005). The kernels make clear predictions about isotropic bias in
azimuthal anisotropy, however, and their applicability is tested im-
plicitly here as we compare the predictions with real observations
in Section 3. Tests based on a direct numerical simulation (e.g.
Fichtner et al. 2009; Tape et al. 2010) or other presumably more ac-
curate kernels either with a more sophisticated theoretical treatment
(e.g. Zhou et al. 2004), a numerical method (e.g. Tromp et al. 2005;
Peter et al. 2007) or empirical sensitivity kernels (Lin & Ritzwoller
2010) is beyond the scope of this paper.

We follow the eikonal tomography method described by Lin et al.
(2009) here to estimate the directionally dependent apparent phase
velocities from the simulated data and in Section 3 based on real
data. Eikonal tomography is a local inversion method (Pollitz &
Snoke 2010), which directly determines the surface wave veloc-
ity structure by observing wave propagation across a dense array.
Fig. 2(c) presents an example of the 60 s Rayleigh wave phase trav-
eltime map determined from the synthetic phase traveltime mea-
surements across the array from a single simulated event that lies
northwest of the array. We apply a minimum curvature surface
fitting method (Smith & Wessel 1990) to interpolate the inferred
traveltimes onto a 0.2◦ × 0.2◦ grid. The map is only meaningful
where there are stations. The method smoothly extrapolates out-
side the region with station coverage, but the traveltimes are not
constrained by the synthetic measurements. Based on eq. (1), the
gradient of this phase traveltime map provides a direct estimate
of the apparent phase speed, which is summarized in Fig. 2(d), as
well as the direction of wave propagation at each location. The
map is truncated to the region of the observing stations (Lin et al.
2009). The eikonal equation (eq. 1) naturally accounts for off-great-
circle propagation but does not account for the finite frequency
effects.

The phase velocity anomalies in Fig. 2(d) are shifted slightly to-
ward the event direction relative to the input model (Fig. 2a). This
is due to the non-zero backward scattering sensitivity for synthetic
phase traveltime measurements at each station, which is not ac-
counted for by the ray theoretically based inversion method. This is
particularly clear for the low velocity anomaly associated with the
Snake River Plain. In effect, the forward edge of sensitivity appears
to lead the ray theoretic wave front. Thus, a finite frequency wave
approaching a low velocity anomaly (e.g. the Snake River Plain
in Fig. 2a) will sense the presence of the anomaly in front of the
anomaly, which is not yet intersected by the ray. This forward sen-
sitivity is actually caused by backscattering from a strong structural
contrast. The effect will be to shift the anomaly in the direction of
the incoming wave (Fig. 2d). As we will show in Section 3, this

same shifting phenomenon is also observed with real data. Waves
that approach the anomaly from the opposite direction will experi-
ence the anomaly similarly, but will shift the apparent location of
the anomaly in the opposite direction. Near the edges of velocity
anomalies, therefore, the apparent speed of the wave will be az-
imuthally dependent, which imparts an apparent anisotropy to the
measured phase speeds.

With multiple events, following the eikonal tomography method
(Lin et al. 2009), phase speed measurements at the same location
are averaged to estimate the isotropic phase speed structure where
the uncertainty is also estimated based on the standard deviation
of the mean. To determine the azimuthal variation, we estimate
the directionally dependent phase speed and uncertainty based on
the mean and standard deviation of the mean within each 20◦ az-
imuthal bin, respectively. To be consistent with the data processing
for real observations, a 9-point (3 × 3 grid with 0.6◦ separation)
averaging scheme is used to reduce small-scale variations (Lin et al.
2009) for directionally dependent measurements, which effectively
also reduces the resolution to ∼200 km (in contrast to ∼70 km for
isotropic maps). Fig. 3(a) shows an example from our simulations of
this directional dependence in apparent phase speed measurements
for the 60 s Rayleigh wave at a point near the Snake River Plain (star
in Idaho in Fig. 1). A clear 1ψ component of apparent azimuthal
anisotropy is observed which is about twice as strong as the ap-
parent 2ψ component. Waves moving toward the southeast (∼150◦

from north), which is approximately perpendicular to the edge of the
Snake River plain, appear to propagate slower than waves in the op-
posite direction. Both the apparent 1ψ and 2ψ signals are spurious,
because the input model is isotropic. Because of the strength of the
1ψ signal, the traditional functional form for a weakly anisotropic
medium (Smith & Dahlen 1973), which contains only even order
sinusoids, is inappropriate to analyse azimuthal anisotropy. Instead,
we will assume that phase velocity exhibits the following directional
dependence

c(ψ) = ciso

{
1+ A1psi

2
cos(ψ − ϕ1psi)+ A2psi

2
cos[2(ψ − ϕ2psi)]

}
,

(3)

where ciso is the isotropic component of wave speed, ψ is the
azimuthal angle measured positive clockwise from north, A1psi

and A2psi are the peak-to-peak relative amplitude of 1ψ and
2ψ anisotropy, and ϕ1psi and ϕ2psi define the orientation of the
anisotropic fast axes for the 1ψ and 2ψ components, respectively.

The best-fitting 1ψ and 2ψ components of anisotropy (e.g.
Fig. 3a) across the entire western United States for the 60 s Rayleigh
wave synthetic test are summarized in Figs 3(b)–(d) where the re-
sulting isotropic phase speed map is also plotted in the background
of Fig. 3(b). A clear correlation is observed between strong 1ψ

anisotropic signals and regions with large structural contrasts, as
Figs 3(b) and (c) show. The observed apparent fast directions al-
ways point toward higher velocities (Fig. 3b). In contrast, the 2ψ

anisotropy is better correlated with linear features, such as the Snake
River Plain, where either fast or slow directions align with the lin-
ear slow or fast anomaly, respectively (Fig. 3d). The isotropic map
(Fig. 3b) is clearly much smoother than the input model (Fig. 2a)
reflecting the discrepancy of the wide kernels and the ray inversion
method used in our synthetic tests.

The apparent 1ψ and 2ψ anisotropy are both ‘isotropic bias’ of
the estimates of azimuthal anisotropy because the input model is
purely isotropic. To further understand the part of the sensitivity
kernels that produce each kind of bias, we perform synthetic tests
with kernels either with sensitivity to only forward scattering or
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Figure 3. (a) The directionally dependent phase velocity measurements (red bars) for a point in Idaho northwest of the Snake River Plain (star in Fig. 1) for
the 60 s Rayleigh wave simulation. The green line shows the best-fitting curve based on eq. (3) where the amplitudes of the 1ψ and 2ψ components are shown.
(b) The predicted 1ψ fast directions at locations where the 1ψ amplitude is larger than 2 per cent are shown with arrows. The resulting isotropic phase velocity
map is shown in the background. (c) The predicted 1ψ amplitudes. (d) The predicted 2ψ anisotropy. The fast propagation direction and anisotropy amplitude
are presented by the orientation and length of the red bars. The anisotropy amplitude is also plotted in the background.

backward scattering (Fig. 2b). The observed 1ψ and 2ψ anisotropy
from forward and backward scattering alone are summarized in
Fig. 4. The forward scattering part of the kernel produces a weak
1ψ bias (Fig. 4a) but a strong 2ψ bias (Fig. 4b). Conversely, the
backward scattering part of the kernel generates a strong 1ψ bias
(Fig. 4c) and a weak 2ψ bias (Fig. 4d). Thus, as mentioned earlier,
backward scattering controls the 1ψ bias. The 2ψ bias is caused
by wave front healing, which is due to the broad forward scat-
tering sensitivity. Note that the wave front healing effect can in
general be a multiple scattering effect particularly if the structural
anomaly is significant (Malcolm & Trampert 2011). Here, only
the single scattering aspect of the effect is addressed based on our
simulations.

3 O B S E RVAT I O NA L M E T H O D S A N D
R E S U LT S

Similar to Section 2, we follow the eikonal tomography method
described by Lin et al. (2009) to determine the local directional de-
pendence of phase velocities across the western United States with
earthquakes measurements. Over 700 earthquakes that occurred be-
tween 2006 January 1 and 2010 April 11 with M s magnitudes larger
than 5.0 are used (Fig. 5). For each earthquake, we apply automated
frequency-time analysis (FTAN) to measure phase traveltimes at
each period for all available stations. Note that the FTAN method
estimates the phase information (hence the phase traveltime) at
the time of the maximum amplitude of the group arrival for each

C© 2011 The Authors, GJI

Geophysical Journal International C© 2011 RAS



6 F.-C. Lin and M. H. Ritzwoller

Figure 4. (a) and (b) The predicted 1ψ and 2ψ anisotropy based on the forward scattering kernels alone. In (a), the arrows present 1ψ fast directions with 1ψ

anisotropy amplitude larger than 0.75 per cent. The anisotropy amplitude is plotted in the background. In (b), 2ψ fast propagation directions and anisotropy
amplitudes are presented by the orientation and length of the red bars. The anisotropy amplitude is also plotted in the background. Panels (c) and (d) same
as (a) and (b), but with backward scattering kernels alone. In (c), the fast directions are presented by arrays only when anisotropy amplitudes are larger than
1.5 per cent.

band-passed waveform. This means that scattered energy separated
from the main arrival will not affect the phase traveltime measure-
ments. This is consistent with the use of non-oscillatory sensitivity
kernels in the synthetic tests discussed in Section 2. We remove
all measurements with signal-to-noise ratios less than 10. For each
period, only earthquakes with valid measurements from at least 50
stations across the array are used for further analysis.

For each earthquake, we apply minimum curvature surface fitting
to interpolate all phase traveltime measurements onto a 0.2◦ × 0.2◦

grid to construct the phase traveltime maps for each period. The 2π

phase ambiguity is corrected based on nearby stations and anoma-
lous measurements are removed before a final map is constructed
(Lin & Ritzwoller 2011). Figs 6(a) and (b) show two examples of

the resulting phase traveltime maps for the 60 s Rayleigh wave
propagating to the southeast and northwest, respectively. Similar
to the simulation results presented in Section 2, the maps are only
meaningful where there are stations. The apparent phase velocity
maps computed from the gradient of the phase traveltime using eq.
(1) for each of these two earthquakes are presented in Figs 6(c)
and (d). These maps are truncated to the region of the observing
stations (Lin et al. 2009). Note that similar to the synthetic result
shown in Fig. 2(d), for the earthquake in which the wave front
propagates to the southeast, the apparent low phase speeds beneath
the Snake River Plain shift toward the northwest (Fig. 6c). This
implies that phase traveltime measurements obtained on real data
are also sensitive to downstream structures, presumably through
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Figure 5. The earthquakes used in this study. Circles mark the location
of the earthquakes, the star is the centre of our study region, and the lines
between circles and the star are great-circle paths. The two yellow circles
and paths mark the earthquakes used in Fig. 6.

backward scattering. A southeastern shift is less apparent for the
wave propagating in the northwestern direction probably because of
a cancellation between the slow anomaly of the Snake River Plain
with the faster anomaly in southwest Wyoming (Fig. 6d).

As in Section 2, measurements from different earthquakes are
statistically summarized to estimate both isotropic phase velocity
and directionally dependent phase velocity and their uncertainties
for each location. Figs 7(a) and (b) present two examples of the
directionally dependent phase velocities for 60 s Rayleigh waves at
locations near the Cascade Range and the Snake River Plain (stars
in Fig. 1), respectively. Based on these observations, as well as
those shown by Lin & Ritzwoller (2011), 1ψ and 2ψ are clearly the
dominant and the only robust components of the observed azimuthal
anisotropy, which justifies the use of eq. (3). For each location, we fit
the observed velocity measurements with eq. (3) to simultaneously
estimate the 1ψ and 2ψ components of azimuthal anisotropy. Sig-
nificant 1ψ components of apparent anisotropy are observed at each
location and both observations agree qualitatively with the synthetic
predictions. The non-physical 1ψ apparent anisotropy signal (>3
per cent amplitude) dominates potential intrinsic 2ψ anisotropy,
which typically have amplitudes less than 2 per cent (e.g. Marone
& Romanowicz 2007; Lin et al. 2011).

The estimated 1ψ and 2ψ anisotropic signals and the resulting
isotropic phase speed map from real data for 60 s Rayleigh waves
across the western United States are summarized in Fig. 8. Clear
correlations between strong 1ψ anisotropy and edges of structural
boundaries are observed with fast directions that point toward the
faster structures (Figs 8a and b). Regions with the most significant
1ψ anisotropy amplitudes (>4 per cent) are associated with the
sharpest velocity contrasts in the western United States, such as
the edges of the Snake River Plain slow anomaly, the Colorado
Plateau fast anomaly and the fast anomaly of the subducted Juan de
Fuca Plate near the Cascade Range. The pattern of the observed 1ψ

anisotropy is similar to the synthetic prediction shown in Figs 3(b)
and (c). The observed 2ψ anisotropy, on the other hand, is in general

weaker than the observed 1ψ anisotropy (1 per cent on average for
2ψ signals compared to 1.6 per cent for 1ψ signals) and shows a
less clear relationship with the isotropic structures. This suggests
that the observed 1ψ and 2ψ anisotropy are different in nature. The
correlation between the observed (Fig. 8c) and predicted (Fig. 3d)
2ψ patterns is also weak (Section 4.1). This is probably due to
the existence of intrinsic 2ψ anisotropy although inaccuracy of the
forward scattering part of the sensitivity kernel may also contribute.
The isotropic map (Fig. 8a) is clearly less smooth than the synthetic
result (Fig. 3b) probably due to the wide kernels and the overly
smoothed input model used in the synthetic test.

4 D I S C U S S I O N

Simulations and observations with real data both establish that
isotropic bias poses a significant problem for the inference of in-
trinsic azimuthal anisotropy and that this bias worsens as period
increases. Thus, we consider here two principal questions. First, is
there is a period threshold below which observers can safely ignore
isotropic bias even within the context of ray theory (e.g. eikonal
tomography)? Second, what can observers do to diagnose whether
their estimates of azimuthal anisotropy are biased by isotropic het-
erogeneities and minimize isotropic bias?

As discussed above, finite frequency (non-ray theoretic) effects
produce both 1ψ and 2ψ apparent anisotropy. However, the physics
of the phenomena are different in each case. The apparent 1ψ signal
is caused by backward scattering from a sharp velocity contrast in
the neighbourhood of the observing station. The apparent 2ψ bias,
on the other hand, is caused by wave front healing during the forward
progress of the wave front, which is modelled by the broad forward
scattering part of the finite frequency kernel. Because 1ψ anisotropy
is non-physical for surface waves, its observation provides unam-
biguous evidence for isotropic bias. To draw conclusions about the
period dependence of 1ψ isotropic bias, therefore, is straightfor-
ward and is the subject of Section 4.1. However, observations of 2ψ

anisotropy may either be caused by bias from isotropic structures,
by intrinsic anisotropy within the earth, or by an unknown combina-
tion of both. The period dependence of 2ψ isotropic bias, therefore,
is more ambiguous, and is discussed in Section 4.2.

To investigate the period dependence of the isotropic bias, Figs 9
and 10 present the observed and simulated 1ψ and 2ψ anisotropy
for the 40- and 80-s period Rayleigh waves to compare with the re-
sults at 60-s period in Figs 3 and 8. The input models for the 40 and
80 s simulations, which are the isotropic phase speed maps based
on Helmholtz tomography (Lin & Ritzwoller 2011), are plotted in
Fig. 11. In addition, to quantitatively compare the amplitude of the
bias of anisotropy predicted from the synthetic tests to the obser-
vations with real data, Figs 12(a) and (b) present the percentage of
the region with significant anisotropic amplitudes as a function of
period. We consider anisotropic amplitudes of 2 and 1 per cent as
the significance threshold for 1ψ and 2ψ anisotropy, respectively.
The region east of 255◦ is not included in this analysis due to shorter
spans of deployment for the stations in this region. To compare the
direction of biased anisotropy predicted from the synthetic tests to
observations with real data, Fig. 12(c) shows the vector correlation
between the predicted and observed fast directions within the re-
gion of significant predicted and meaningful observed anisotropy
amplitudes. Here, we define 2 and 1 per cent anisotropy amplitudes
as significant for 1ψ and 2ψ predicted anisotropy, but 1 and 0.5 per
cent as meaningful for 1ψ and 2ψ observed anisotropy, respectively.
The vector correlation, ρab, between two directional distributions
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8 F.-C. Lin and M. H. Ritzwoller

Figure 6. (a) The 60 s Rayleigh wave phase traveltime map for the 2008 January 9 earthquake near Queen Charlotte Islands (M s = 5.9). The stations with
available phase traveltime measurements used to construct the map are shown as triangles. Contours are separated by intervals of 60 s. The arrow indicates the
direction of wave propagation. Panel (b) same as (a) but for the 2008 June 17 earthquake south of Panama (M s = 5.3). (c) and (d) The apparent phase velocity
maps derived from (a) and (b) based on eq. (1). The inserts show blow ups of the region near the Snake River Plain with the stations used shown as triangles.

âi and b̂i (i = 1,. . .,N) is defined as

ρab =
∑N

i=1 (âi − 〈â〉) · (b̂i − 〈b̂〉)√∑N
i=1 (âi − 〈â〉)2

√∑N
i=1 (b̂i − 〈b̂〉)2

, (4)

where âi and b̂i are unit vectors and i is the location index. Because
of the 180◦ periodicity of fast directions for 2ψ signals, the azimuth
of each fast direction is first multiplied by 2 for the 2ψ analysis
before inserting into eq. (4). The correlation coefficient ρ ranges
from –1 to 1. When âi and b̂i point in the same direction for the 1ψ

or 2ψ component the coefficient will equal 1. The coefficient will
be –1 when âi and b̂i point in the opposite direction everywhere for

the 1ψ component and are everywhere perpendicular to each other
for the 2ψ case.

4.1 Period dependence of 1ψ isotropic bias

Due to the reciprocity principle, intrinsic surface wave structural
anisotropy cannot manifest a 1ψ azimuthal component (Chen &
Tromp 2007). The clear correlation between the observed 1ψ

anisotropy and isotropic structural boundaries, therefore, suggests
that the 1ψ anisotropy is purely isotropic bias. Note that while sta-
tion timing errors can also cause spurious regional 1-psi anisotropy,
this is clearly not the case here. The fact that the amplitude of
the observed 1ψ anisotropy increases with period (e.g. Fig. 12a)
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Figure 7. (a) The directionally dependent phase velocity measurements at a point near the Cascade Range (star in Fig. 1). The red bar summarizes all
measurements within each 20◦ azimuthal bin with their mean and standard deviation of the mean. The green solid line shows the best-fitting curve of eq. (3)
to the measurements with 1ψ and 2ψ amplitude also indicated in the panel. The best-fitting curve based on the synthetic test is also plotted as the blue dashed
line. (b) Same as (a) but for a point near the Snake River Plain (star in Fig. 1)

Figure 8. Same as Figs 3(b)–(d), but with real data measurements for the 60-s period Rayleigh wave.

indicates that it is a finite frequency effect. However, at what period
does the 1ψ anisotropy become significant?

To compare with the observed results for the 60 s Rayleigh
wave (Fig. 8), Figs 9(a), (b), (d) and (e) presents the observed
1ψ anisotropy at 40 and 80 s period, respectively. Measurable 1ψ

signals are observed at both periods near the edges of prominent
velocity anomalies, but the signals are significantly weaker at 40 s
than at 60- or 80-s period. At 40-s period, the wavelength of the
Rayleigh wave is ∼150 km and the backward scattering sensitiv-
ity extends only ∼30 km behind the station. Given the ∼70 km
station spacing for the USArray, a sharp structural boundary half
way between two stations will have only a weak effect on the phase
traveltime measurements at the two stations at this period. For peri-
ods shorter than 40 s, therefore, backward scattering is less severe
than at longer periods for our station configuration. At 80-s period,
the observed 1ψ anisotropy pattern (Fig. 9e) is similar to the 60-s
result (Fig. 8b), although the pattern is more variable. This may be
due to the degrading data quality at the longer periods (only 545

events satisfy the selection criterion at 80 s compared to 775 and
743 events for 40- and 60-s period, respectively).

The simulations for the 40- and 80-s period Rayleigh waves are
summarized for apparent 1ψ anisotropy in Figs 10(a), (b), (d) and
(e) to contrast with the observed results in Fig. 9 and the simulations
at 60-s period presented in Fig. 3. Similar to the 60-s results, the pre-
dicted 1ψ anisotropy patterns correlate well with the observations
based on real measurements, particularly at 80-s period. Again, the
isotropic map (Figs 10a and d) is smoother than the real observation
(Figs 9a and d) probably reflecting the wide kernels and the overly
smoothed input models used in the simulations.

Fig. 12(a), which presents the percentage of the region with sig-
nificant anisotropic amplitudes as a function of period, demonstrates
that the synthetic tests slightly underestimate the real 1ψ isotropic
bias, but does correctly predict the growth of the 1ψ signal with
period. The discrepancy may be caused by random noise in the
measurements, the sensitivity kernels inaccurately reflecting the
real sensitivity of the measurements, or the underestimation of the
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Figure 9. Same as Fig. 8, but with real data measurements for the 40 s (a)–(c) and 80 s (d)–(f ) period Rayleigh waves.

amplitude of the isotropic velocity anomalies in the input phase
velocity maps. Fig. 12 demonstrates that there is good correlation
(ρ > 0.7) between the predicted and observed fast directions for 1ψ

anisotropy at all periods, which suggests that the kernels we use to
model backward scattering accurately reflect the observed bias in
the 1ψ anisotropy.

In summary, the simulations and observations with real data agree
substantively qualitatively and quantitatively. They establish that the
1ψ bias increases with period and becomes particularly significant
above about 50-s period which the corresponding backward scat-
tering sensitivity extended ∼35 km behind each station roughly the
same as the half station spacing for the USArray. For different sta-
tion configurations, the period, which the 1ψ becomes significant
will probably be different and be controlled by the station spacing
and the resolution desired.

4.2 Period dependence of 2ψ isotropic bias

Because of the existence of intrinsic 2ψ anisotropy in the earth,
determination of the bias in the 2ψ signal is much harder than for
1ψ anisotropy. At all periods, the observed 2ψ signal is some com-
bination of real anisotropy and bias and separating these effects is
problematic. This is exacerbated by the fact that our simulations
of wave front healing through a forward scattering finite frequency
kernel (which produces the 2ψ bias) may be less accurate than our

simulations of backward scattering (which produces the 1ψ bias)
because the kernels may be too broad (e.g. Yoshizawa & Kennett
2002; Zhou et al. 2005) and multiple scattering is not modelled
(Malcolm & Trampert 2011). It is reasonable to assume, however,
that wave front healing, and therefore the 2ψ bias, would set on at
about the period that the corresponding wavelength becomes com-
parable to the scale of major isotropic anomalies. By estimating this
scale as ∼200 km in the western United States, the 2ψ anisotropy is
probably significantly biased only above about 50-s period, similar
to 1ψ anisotropy. We present several lines of circumstantial evi-
dence that point to the observed 40 s 2ψ map (Fig. 9c) being much
less biased by isotropic structures than the maps above about 50-s
period (Figs 8c and 9f).

First, the simulated 2ψ bias maps at 40 and 80 s shown in
Figs 10(c) and (f) are very similar in the 2ψ fast directions and
the distribution of high amplitude features, and differ mainly in the
amplitude of the bias. However, the observed 40 and 80 s maps in
Figs 9(c) and (f) are quite different from each other with a fast direc-
tion correlation coefficient equal only to 0.24 for regions where the
amplitude of anisotropy is larger than 0.5 per cent. We believe this is
because the observed 40 s map is dominated by intrinsic anisotropy
whereas the 80 s map is much more strongly biased. It is unlikely
that the intrinsic anisotropy at these two periods, which are both
sensitive predominantly to the uppermost mantle, are uncorrelated.
Second, close inspection reveals that the observed 40 and 80 s 2ψ
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Figure 10. Same as Fig. 9, but with simulated measurements at 40 s (a)–(c) and 80 s (d)–(f ) periods.

Figure 11. (a) The input model for the 40 s Rayleigh wave synthetic results shown in Figs 10(a)–(c). Panel (b) same as (a) but for the 80-s results shown in
Figs 10(d)–(f).
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Figure 12. (a) Percentage of the studied region where the predicted (green dash line) or observed (solid red line) 1ψ anisotropy amplitude is greater than 2 per
cent as a function of period. Panel (b) same as (a), but for 2ψ anisotropy greater than 1 per cent. (c) The correlation in the fast direction between the predicted
and observed 1ψ (solid red line) and predicted and observed 2ψ (green dash line) anisotropy. Only regions with significant predicted anisotropy amplitudes
(>2 per cent for 1ψ and >1 per cent for 2ψ) and meaningful observed anisotropy amplitudes (>1 per cent for 1ψ and >0.5 per cent for 2ψ) are included in
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maps differ mainly where the simulated 80 s 2ψ bias in Fig. 10(f)
is largest. This suggests that our simulations correctly predict the
location where the observed 2ψ anisotropy is likely to be biased
at long periods. Third, as Fig. 12(b) shows, significant simulated
2ψ bias occurs at 40-s period over an area only about 1/3 the size
of significant observed 2ψ anisotropy. Although we are concerned
about the absolute accuracy of our 2ψ simulations, the relative area
of significant 2ψ bias in our simulations more than doubles be-
tween 30- and 60-s period. Fourth, as Fig. 12(c) illustrates, at 70-
and 80-s period the predicted and observed fast directions are better
correlated (ρ ∼ 0.5) with each other than at shorter periods, which
implies that the isotropic bias in 2ψ anisotropy cannot be ignored
at the longer periods.

This evidence is consistent with the belief that isotropic bias of
2ψ anisotropy is most severe above about 50-s period and the 2ψ

maps based on ray theory (e.g. eikonal tomography) will be most
reliable below this period. We acknowledge that this reasoning is
not iron-clad, as our simulations have their limitations. Future ef-
forts to improve the accuracy of the simulations of 2ψ bias would
be useful. More useful, perhaps, would be efforts to model finite
frequency effects in inversions directly, which is the approach taken
by Lin & Ritzwoller (2011). This approach yields very different ob-
served 2ψ anisotropy at 80-s period but very similar 2ψ anisotropy
at 40-s period compared to the results presented here. In addition,
the observed fast directions are better correlated across period. For
example, the fast direction correlation coefficient between observa-
tions at 40- and 80-s period approximately doubles compared to the
ray theoretic results presented here.

4.3 What are observers to do?

While the 1ψ and 2ψ isotropic bias are probably due to different fi-
nite frequency effects, as indicated by the synthetic tests (Fig. 4), the
observation of a 1ψ component of anisotropy nevertheless should
be considered as a indicator of some level of isotropic bias in the
2ψ component, particularly for regional applications. Although
it is harder to discriminate the 2ψ isotropic bias from intrinsic
anisotropy, the results shown in Section 4.2 suggest that the bias is
probably important at periods >50 s where the 1ψ signal is partic-
ularly strong. Although the backward scattering should also affect
traveltime measurements near structure boundaries for global-scale
tomography, the effect can be smeared out easily along long paths

and is probably less important. In fact, for any application, we be-
lieve that the isotropic 1ψ bias will only become important near
a station when the dimension of the backward scattering sensitiv-
ity is approaching the resolution desired. Hence, the threshold for
significant isotropic 1ψ bias may shift to longer periods for global
tomography. However this is speculative and it would be prudent for
global-scale modellers also to consider the recommendations here.
In addition, surface wave dispersion measurements obtained from
ambient noise are not exempt from isotropic bias. Ritzwoller et al.
(2011) demonstrate that 1ψ anisotropy is also observed in ambient
noise surface wave tomography at periods greater than ∼50 s with
the USArray.

First, observers would be well advised to estimate and report
1ψ anisotropy in their inversions. The observation of a weak 1ψ

component of anisotropy is evidence for weak isotropic bias. A
strong 1ψ signal is cause for concern that the 2ψ signal is biased
and efforts must be taken to minimize the bias.

Second, observers are encouraged to model finite frequency ef-
fects, particularly wave front healing and backward scattering, in
their inversion for azimuthal anisotropy. The use of finite frequency
kernels that are not tuned to the measurements, however, may offer
little help in reducing both the 1ψ and 2ψ bias. The weak correla-
tion between the predicted and observed 2ψ fast directions where
the predicted anisotropy amplitude is significant, as demonstrated
in Fig. 12(c), is evidence that the ad-hoc finite frequency kernels
used in this study may not faithfully reproduce the 2ψ bias effect.
We note that we also carried out the synthetic experiments with
oscillatory analytical kernels, which performed worse than the non-
oscillatory kernels in matching the observed 1ψ bias. However,
they produced geometrically similar results for the 2ψ bias but with
reduced amplitudes. Lin & Ritzwoller (2011) discuss the effect of
applying finite frequency corrections via the Helmholtz equation
(eq. 2).

Third, the 1ψ signal may be misinterpreted as the 2ψ compo-
nent of anisotropy when the data distribution is not homogeneous in
azimuth. Fig. 13 presents examples using the directionally depen-
dent phase velocity measurements shown in Fig. 7. The green line
fits the observations in which both the 1ψ and 2ψ components are
specified in the regression (i.e. eq. 3). The 2ψ part of this regression
is shown with the black solid line. Thus, in Idaho near the Snake
River Plain (Fig. 13b), simultaneous specification of the 1ψ and
2ψ components in the regression produces a 2ψ component with
the small amplitude of 0.1 per cent. However, if the regression is
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Figure 13. (a)–(b) Directionally dependent phase velocity measurements of 60 s Rayleigh wave obtained with the real data near the Snake River Plain and
near the Cascade Range. (Same as Figs 7a and b but with two additional 2ψ curves.) The black thin line is the best-fitting 2ψ curve when both 1ψ and 2ψ

are fit spontaneously and the dashed grey line is the best-fitting 2ψ curve when only the 2ψ component is fit. Both fast direction and amplitude can be quite
different for the two 2ψ lines depending on if 1ψ is specified simultaneously in the regression.

performed without specifying the 1ψ component, then the 2ψ term
attempts to fit the observed azimuthal distribution and the estimated
amplitude of the 2ψ term increases to 1.8 per cent. The situation
is not as severe near the Cascade Range in Oregon (Fig. 13a), but
the 1ψ bias affects the orientation of the 2ψ fast direction by about
30◦.

5 C O N C LU S I O N

In this study, we discuss the significance of isotropic bias in mea-
surements of azimuthally anisotropic phase velocities obtained from
surface waves based on ray theoretic inversions. We demonstrate
that significant 1ψ anisotropy bias, which is non-physical for sur-
face wave velocity structure, is clearly observed in the western
United States at long periods (>50 s) based on eikonal tomogra-
phy (Lin et al. 2009) and USArray. The clear correlation between
observed 1ψ anisotropy and sharp contrasts in isotropic structures
and the fact that the amplitude of anisotropy increases with period
strongly suggest that the 1ψ anisotropy is a form of isotropic bias
caused by finite frequency effects that are unaccounted for in the
inversion. This bias is probably also present in results based on
other ray theoretic tomography methods particularly when the de-
sired resolution is comparable to the dimension of the backward
scattering sensitivity.

Most studies of finite frequency effects on surface waves have fo-
cused on wave front healing caused by forward scattering (e.g. Nolet
& Dahlen 2000; Ritzwoller et al. 2002; Zhou et al. 2005; Malcolm
& Trampert 2011). Near station finite frequency sensitivity, on the
other hand, has rarely been explored, probably because the spatial
extent of the region with strong backward scattering sensitivity is
very small and it is surprising that its effect on long period surface
wave measurements is important. Accurate expression of the near
station sensitivity is particularly important for regional scale array
studies such as our focus here (Yang & Forsyth 2006). Based on our
simulations, the significant 1ψ signals that we observe near strong
velocity contrasts as well as the spatial shift of the observed anoma-
lies (e.g. Fig 6c) cannot be accounted for with the forward scattering
part of the sensitivity kernel alone. They are explained, however, by

near station backward scattering that provides sensitivity that leads
the arrival of the theoretical ray. Thought of ray theoretically, the
back scattering part of the sensitivity kernel is caused by reflected
signals propagating backward that interfere with the primary signal
and affect the phase traveltime measurement. While surface waves
reflected from sharp velocity contrasts have been identified at pe-
riods less than 30 s (e.g. Ji et al. 2005; Stich & Morelli 2007), the
reflections discussed here merge with the main surface wave packet.

The effect of backward scattering on surface wave phase trav-
eltime measurements is probably only strong when the distance
between a sharp structural boundary and the station is within
∼3/16 of wavelength. Considering the ∼70 km station spacing for
USArray, which is also roughly the dimension of the resolution for
our tomography results (Lin et al. 2009), any structural boundary
that appears right in the middle of two stations will cause no back-
ward scattering effect when the wavelength is less than ∼200 km,
which roughly corresponds to 50 s Rayleigh wave. This is a plau-
sible explanation for why finite frequency effects begin to manifest
themselves at about 50-s period across the western United States in
our results.

The observation of a 1ψ signal at long periods potentially pro-
vides a means to improve the resolution of structural boundaries
at depth, which is crucial to distinguish thermal from composition
structural variations in the upper mantle. To achieve this, how-
ever, precise knowledge of the near station sensitivity kernel will
be required. Accurate expression of the sensitivity depends on the
measurement method (Tromp et al. 2005). Here, we have chosen
an exceptionally simple form for the finite frequency kernels and
have found that the first-order patterns of the observed 1ψ signals
are predicted relatively well. Although inferring a more accurate
expression for the near station sensitivity is beyond the scope of
this paper, we find that finite frequency kernels with near-station
multiple side lobes do not predict the observed 1ψ anisotropy pat-
tern. This may be because our measurement method is based on
Frequency-Time Analysis (FTAN), which effectively removes the
influence of wave groups that are well separated from the main ar-
rival. A fully 3-D numerical simulation might be required to provide
better insight (e.g. Fichtner et al. 2009; Tape et al. 2010).
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Although estimating the 2ψ bias is not as straightforward as
1ψ bias due to the existence of intrinsic 2ψ azimuthal anisotropy,
there are several lines of evidence that suggest the presence of 2ψ

bias at long periods (>50 s) where the wavelength is comparable
or larger than the scale of major isotropic structures in the region.
Based on our synthetic tests, the 2ψ bias is mainly caused by wave
front healing which arises from the broad forward scattering part
of the sensitivity kernel, and correlation can be observed between
predicted and observed 2ψ fast directions at long period (>60 s)
where predicted 2ψ bias is strong. The strong isotropic bias in 2ψ

anisotropy at long periods probably is responsible for the weak cor-
relation between the observed 2ψ anisotropy fast directions across
different periods. In a separate contribution, we show that the ob-
served 2ψ anisotropy is better correlated across different periods
when finite frequency effects are accounted for in the inversion (Lin
& Ritzwoller 2011).

To evaluate isotropic bias in azimuthal anisotropy measure-
ments properly, we encourage observers to estimate and report 1ψ

anisotropy in their inversions, to model finite frequency effects us-
ing methods that are tailored to the method of measurement, and to
estimate 1ψ and 2ψ anisotropy simultaneously.
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