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Abstract—The transformative integration of sensor networks
and geophysical imaging techniques enables the creation of a
system to monitor and analyze seismic data in real time as well
as image various subsurface structures, properties, and dynamics.
Ambient Noise Seismic Imaging (ANSI) is a technique widely used
in geophysical exploration for investigating subsurface structures
using recorded background raw ambient noise data. The current
state of the art of ambient noise monitoring relies on gathering
these high volumes of raw data back to a centralized server or
base station to pre-process, cross-correlate, analyze frequency-
time components and generate subsurface tomography. However,
modern computational sensors (for example, those with ~1.2GHz
of processor and ~1GB of memory) can be not only used
for recording raw vibration data but also performing in-situ
processing and cooperative computing to generate subsurface
imaging in real time. In this paper, we present a distributed
solution to apply ambient noise tomography over large dense
networks and perform in-network computing on huge seismic
samples while avoiding centralized computation and expensive
data collection. Results show that our approach can detect
subsurface velocity variations in real time while meeting net-
work bandwidth constraints and reducing communication cost

(~ —75%).

Index Terms—Sensor networks, cooperative computing, am-
bient noise, distributed system, tomography.

I. INTRODUCTION

VER the last years, ambient noise tomography has

become one of the fastest growing research areas in seis-
mology and exploration geophysics. Compared to earthquake-
based seismic tomography methods, ambient noise tomography
is particularly useful in imaging shallow earth structures [1],
[2]. Moreover, because of the persistent nature of the seismic
background noise, temporal variation of the earth structure can
be analyzed and monitored by studying the variation in the noise
cross-correlation function [3]-[5]. Ambient noise methods have
the advantage of being low cost and having resistant repeating
sources with a minimal environmental disturbance.

The problem is that the existing ambient noise tomography
methods use post-processing approaches to recover subsurface
structures, and they do not have the capability of obtaining
information in real time. Current approaches involve manual co-
llection of raw seismic data from the sensors to a central server
for post-processing and analysis. Sensor network technology
has matured to the point where it is now possible to deploy
and maintain large networks for earth structures monitoring
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[6]-[8]. Also, the computing power of every sensor can be
one of the most exciting opportunities for in-situ computing
due to the ability to generate real-time imaging of the earth’s
interior and study the complex dynamic processes occurring
within. However, it is virtually impossible to collect all raw
data to a central place through wireless sensor networks due to
the severe energy and bandwidth constraints' and disruptions
caused by harsh environmental factors. Even though system-
level challenges of deploying wireless sensor networks are
significant, focusing on distributed in-network signal processing
and computing can help to support real-time tomographic
imaging.

In this paper, we present a novel real-time ambient noise
imaging system through in-situ computing in sensor networks,
and we illustrate the process from signal processing challenges
to end-to-end system design. The ANSI system is a sensor
network of nodes that can efficiently perform seismic ambient
noise cross-correlations and compute real-time tomography
by continuously monitoring detailed structures within the top
few kilometers underground. This system is particularly cost
attractive because the ambient noise used for tomographic
imaging does not rely on any active sources or earthquakes,
and it is autonomous and self-sustainable with all processing
and computing in the network. To achieve the goal, we
integrate the cutting edge seismic noise analysis, tomography,
sensor communication, and large data computation methods.
Specifically, we integrate communication and computation
devices with sensors such that data recorded by every sensor
can be cross-correlated on site with the data recorded at other
neighboring sensors, and tomography can be achieved without
transmitting the raw data back to a data center. The seismic
raw data are also stored at each device database for future
analysis; since the sensors form a mesh network, the raw data
can be accessed by any device within the network if needed.

The new approach taken in ANSI is general, and it can
be implemented as a new field network paradigm for real-
time imaging of highly dynamic and complex environments,
including both natural and man-made structures. We believe
the system can be applied to a wide range of sustainability-
related topics such as hydrothermal [10], volcanic [11], mining
safety [12], infrastructure monitoring [13], [14], oil and gas
exploration [15], and exploration geophysics [16]-[18]. Addi-
tionally, we envision potential future extraterritorial experiments
for imaging planetary subsurface structures and activities using
ambient noise. In 2018, the InSight Mission to Mars[19] is

! According to [9], the energy of transmitting 1KB a distance of 100m
is approximately the same that executing 3 million of instructions in one
processor. Hence, local data processing is crucial.
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expected to land and begin returning seismic data, which will
hopefully greatly improve our knowledge of Mars’ interior
[20]; in 2020, NASA will also launch Europa Clipper Mission
that will conduct detailed reconnaissance of Jupiter’s moon
Europa and investigate whether the icy moon could harbor
conditions suitable for life [21]. If we use in-situ computing
to process large volumes of network data and only send back
continuously updated subsurface images at much lower rates,
the required data volume is significantly reduced, which is
a necessary step to resolve the issues on the structures and
dynamics for extraterritorial bodies. The potential scientific
and social impact is significantly and broadly widespread.

The ANSI system proposed here represents a milestone
for both earth and computer science efforts. Our approach
integrates innovations on ambient noise tomography, in-network
computing and signal processing for real-time subsurface
imaging as follows: (i) approaches to integrating temporal
variation and large N tomography studies based on ambient
noise cross-correlation that provide real-time visualization of
subsurface as a consequence of geological dynamics and nature
resource extraction; (ii) in-network processing techniques to
correlate the noise signals between nodes and derive the phase
velocity under the limited network resource constraints; and
(iii) innovative in-network tomography computing techniques
that distribute the tomographic computing burdens to each node
while performing real-time seismic imaging generation.

The rest of the paper is organized as follows. Section II
presents the related work. Section III provides background
information about ambient seismic noise imaging end-to-end
process. In section IV, we present the distributed system design,
and the system architecture is explained in section V. In
section VI, we carry out experiments through real ambient
noise data. We discuss results in section VII. The conclusion
and future work are presented in section VIII.

II. RELATED WORK

Ambient noise seismic imaging has been widely used for
extracting surface wave velocity maps in geophysical fields. The
method has been applied worldwide (e.g US [22], Asia [23],
Europe [24], New Zealand and Australia [25].) A considerable
part of these approaches was developed to treat the travel time
(time that it takes for seismic waves to travel from one node
to another) between every station pair independently. Some
approaches, like the one presented by Lin et al. [1], have utilized
an array of seismic stations to gather information and treat all
travel time measurements together to improve the resolution
of the tomographic result (velocity map). Even though these
approaches have been successfully applied, they lack real-time
results. The cross-correlation process needs at least several
days for collecting data, and then manual extraction is needed
to gather the information to a central server. Thus velocity
maps may take days or months in being generated.

Real-time seismic imaging generation is possible across
an array of sensors due to the capabilities of current sensor
networks. Furthermore, distributed cooperation between nodes
for generating seismic imaging has proven to be a milestone
in-network computation. Examples of the development of such

computing and network methodology for seismic imaging
applications can be found in [7], [26]-[29]. All of them have
been successful in generating 2D and 3D seismic tomography
by applying travel time tomography techniques and using
earthquake information to illuminate the subsurface of the
earth.

In ambient noise seismic imaging, the data are recovered
from ambient seismic noise, which implies no need for active
energy sources like earthquakes. Ambient noise imaging can be
applied to regions with non-existent seismicity, and it produces
reliable measurements at frequencies that are particularly
difficult using earthquakes or explosions due to scattering
and attenuation. This advantage represents an attractive cheap
scenario since producing active energy sources (explosions) in
non-seismic areas is very costly.

The first attempt to compute ANSI in distributed sensor
networks was made in our previous work [30]. We proposed
the use of a method called distributed eikonal tomography for
generating velocity maps. However, in [30], we assume the
travel times have been already calculated to perform eikonal
method, and this implies only the last step of the ANSI process.
In this paper, we carefully incorporate and improve all previous
steps of the ANSI process to get a complete system, namely
recording raw data, performing distributed cross-correlation,
calculating in-situ frequency-time analysis, deriving travel time
measurement, performing distributed eikonal tomography and
allowing velocity maps visualization.

To the best of our knowledge, this is the first comprehensive
end-to-end system to compute ANSI under distributed con-
straints through sensor network computing capabilities, coope-
ration between nodes, and in-situ distributed seismic imaging
algorithms. The ANSI prototype system has implemented all
steps of ambient noise tomography, from raw data to velocity
maps, and it can be extended as a general field instrumentation
platform for ambient noise seismic data.

III. BACKGROUND

Ambient noise seismic imaging is a kind of passive imaging
where vibrations of the ambient noise recorded by passive
sensor arrays can be used to image the medium through which
waves travel. To perform tomography with ambient noise, many
methods can be used, for example eikonal tomography [31],
straight-ray tomography [32], seismic interferometry [33]. All
of them have its own properties and mathematical formulation.
For straight-ray and interferometry, an inversion problem needs
to be settled. The eikonal method is a surface wave tomography
that complements the traditional methods. The main advantages
of this method are: (i) there is no explicit regularization; this
makes the method largely free from ad hoc choices; (ii) the
method account for bent rays, and ray tracing is not needed.
The gradient of the phase front provides information about the
local direction of wave travel. In traditional tomography, the use
of bent rays would need iteration with ray tracing performed on
each iteration; and (iii) the ray tracing, matrix construction
and inversion of the traditional methods are not needed.
Those have been replaced by surface fitting, computation
of gradients and average. Therefore, the method is very fast
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in terms of computational cost and suitable for distributed
approaches.

The ANSI methodology, that we introduce in this paper,
involves the steps shown in Fig. 1. Those include: (i) using
seismic sensors (green circles) to measure the vibration of
the ambient noise; (ii) calculating the cross-correlation of the
signal waves with neighbors and performing a frequency-time
analysis to obtain travel time measurements of the ambient
noise signal; and (iii) using eikonal tomography [31] to build
velocity maps.
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Fig. 1: Ambient noise seismic imaging process.

We briefly summarize the steps described in [1], [30], [34],
[35] as follows:

A. Signal pre-processing

The ambient noise raw data gathered from each individual
sensor need to be prepared to get a suitable individual waveform
for future cross-correlation. As explained in [34], the purpose
of this preparation is to accentuate ambient noise by attempting
to remove earthquake signals and instrumental irregularities
that tend to hide ambient noise. The signal preparation has three
important steps: (i) removing instrumental error response and
cutting data; (ii) time-domain normalization and (iii) spectral
whitening.

To remove instrumental irregularities, the first step is to
remove the mean and the trend of the signal. Then a taper
is applied to improve signal properties in the frequency
domain [36]. A simple cosine taper filter that applies cosine-
shaped attenuation function to specified frequencies at low and
high frequencies is applied to remove instrument irregularities.
Additionally, the data should be cut into a specific time-window
to be analyzed in a window fashion. Data can be cut on one
day, some hours, o few minutes. This window of time A\ will be
used for posterior steps (cross-correlation) and stacked together
until complete the total time 7' of the signal.

The next step is time-domain normalization, also called
temporal normalization [34]. The time-domain normalization
we use is running-absolute-mean normalization [34]. This
method computes the running average of the absolute value of
the waveform in a normalization time window of fixed length,
and it weights the waveform at the center of the window by

the inverse of this average. Given a discrete time-series f, the
normalization weight is

1 n+N
n:* i? 1
w 2NHi_;lel (1)

and the normalized datum is fn = fn/wy,. The width of the
normalization window is 2/N + 1, and it is used to determine
how much amplitude information is retained. The size of N
depends on the half of the maximum period of a bandpass filter.
Fig. 2 shows an example of how the preprocessing methodology
works.

Finally, a spectral normalization is applied. Spectral nor-
malization seeks to reduce broad imbalances in single-station
spectra to aid in the production of a broad-band dispersion
measurement [34]. Inversely weighting the complex spectrum
by a smoothed version of the amplitude spectrum produces the
normalized or whitened spectrum. This process is similar to the
temporal normalization but using frequency domain spectrum.
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Fig. 2: (a) Raw data (b) Data after temporal normalization.

B. Signal Cross-Correlation and Green’s functions

After pre-processing of the raw seismic data, the next step to
get travel time between two nodes is to apply cross-correlation
and stacking processes. Cross-correlation is a common method
to process ambient noise data. The cross-correlation should be
symmetric as the positive and negative lag signals are averaged.
The result of cross-correlation has a positive correlation of the
Green’s function, and this contains the information of group
velocity and phase velocity at different frequencies [37].

Theoretical work by [1] describes how to estimate the
Green’s function G 45(t) between nodes A and B using the
ambient noise cross-correlation Cy g (t) between them:

d [Cap(t) + Cap(-t)

Gap = ——
AB dt 2

0<t<oo (2)

To obtain the unbiased phase and group velocity measures,
the cross-correlation should be transformed to the Green’s
function using equation 2.
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C. Stacking

The stacking process is usually employed to increase the
signal-to-noise ratio (SNR) of the signal [38]. In this case, we
stack the cross-correlation results every time it is performed
(every A minutes). The stacking means superposition and
summation. Before stacking, the cross-correlation is normalized
by the maximum amplitude. As a side note, we want to mention
that there are usually three channels in seismic sensors that
measure vibration on X, Y, Z direction respectively. In this
work, we focused on the vertical component Z because our
main interest is the Rayleigh waves. In literature, it is well-
known that long-range coherent noise can be found on the
vertical component [39]-[41]. However, this work can be easily
extended to be used with horizontal components too. The
important part of working with the horizontal component is
the rotation of the data in the radial/transverse coordinates. To
make the process almost the same, we can borrow the idea of
Lin et al. [1] and postpone the component rotation until after
the cross-correlation by allowing east and north components
temporally normalized together. The distributed sensor network
would be the same, only adding an extra-step in the preparation
of the data is needed.

D. Frequency-time analysis

Frequency-time analysis (FTAN) generates the dispersion
curve of the Rayleigh wave phase velocity [34]. A whole
FTAN process includes: a series of Gaussian band-pass filters
to get Green’s function with different central frequencies and
transformation processes to get the envelope function and
phase function of time series data. With the envelope function
and phase function, we can generate a figure called FTAN
map with the x-axis as apparent period and the y-axis as group
velocity. The local maximum point of this map represents the
travel time ¢,,,, between two nodes [1]. The value of the
phase function at ¢,,,, can be used to determine phase velocity.

The summary of the signal processing analysis to obtain
the travel time measurements is presented in Fig.3. Suppose
two nodes (A and B) need to correlate their ambient noise
signals to obtain the travel time measurement between them.
The pre-processing process includes performing a uniform
down-sampling of the signal (DS), applying data preparation
(Pre) as explained in section III-A and compressing the
signal (Cmp) using a compression library. We use zlib data
compression algorithm [42] and we achieve a compression
rate of ~ 50%. If an initial bandpass filter is applied (BP) the
compression rate is higher. The BP application is configurable
is a configuration file. After the communication of this
pre-processed data, we perform the cross-correlation ().
Every A minutes (for our test we select 5 minutes due to
experts’ recommendations?) the process is repeated and the
cross-correlations are stacked (S). Then a narrow band-pass

%In literature, different cutting window sizes for cross-correlation has been
used; for example, 1-minute window [43] or 30-minute window [44]. We
chose 5-min after consulting with Dr. Fan-chi Lin, one of our co-authors, and
after doing empirical tests of suitable package size for network transmission.
However, this size is configurable in the system.

filter (NBP) is applied at different frequencies. Frequency-time
analysis (FTAN) is then applied and we obtain the travel time
measurements at different frequencies.
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Fig. 3: Summary of signal processing analysis between two
nodes for travel time measurements. The acronyms stand for:
DS (Down-sampling), Pre (Data preparation), Cmp (Compres-
sion), BP (Band-pass filter), ) (Cross-correlation), S (Stacking
process), NBP (Narrow Band-pass filter for each frequency in
consideration), FTAN (Frequency time analysis), Travel Time
(measurements at each particular frequency).

E. Eikonal Tomography

The method of eikonal tomography does not need an initial
model of the medium for computing. It only needs the travel
times between each pair of stations. The gradient of the travel
times provides information about local direction and travel of
the wave, hence, deriving phase velocity maps is possible.

1) Eikonal Equation: Once the travel time 7(r;,r) are
known for positions 7 (arbitrary point in the medium) relative
to a node r;, the eikonal tomography is performed. The eikonal
equation[31] is based on the solution of Helmholtz equation:

1 o ) 2 vaz(T)
Ci(T)z - |VT(T17T)‘ - Ai(T')UJQ . (3)

At high frequencies, when the second right-hand term is
small enough, it can be dropped as:

= V7 (ry, ), )

where, c; is the phase velocity for event ¢ at position r. k; is
the unit wave direction vector for the event ¢ at position r. w
is the frequency, and A is the amplitude of an elastic wave
at position r. The gradient is computed relative to the field
vector r. Equation 4 is derived from equation 3 by ignoring
the second term from the right-hand side. These conclude that
the gradient of the travel time is related to the local slowness
(1/velocity) at r position, and the direction of propagation of
the wave (azimuth) denotes the local direction of the wave.
Dropping the second term on the right-hand side of equation 4
is justified when either the frequency is high or the amplitude
variation is small[31]. When eikonal tomography is used, there
is no need for a tomographic inversion because taking the
gradient of the phase travel time surface gives the local phase
speed as a function of the direction of propagation of the wave.
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2) Isotropic Wave Speeds: Applying eikonal equation 4 can
introduce some errors and usually the phase velocity map is
noisy due to imperfections in travel time surface calculation. To
overcome this issue, a mean slowness and its standard deviation
are calculated in order to obtain the isotropic phase speed.

Traditionally, to compute phase velocity maps through
eikonal tomography we need the following: (i) to generate
a grid of arbitrary points () in the field through interpolation
of travel times; (ii) to construct a phase travel time surface
for obtaining slowness and azimuth vectors in every effective
source relative to each arbitrary point in the grid; (iii) to
calculate the mean slowness and standard deviation of the
phase travel time surface to overcome errors; and (iv) to invert
the final slowness vector to obtain the velocity map.

In the next section, we explain how we design a distributed
system for obtaining velocity maps from a series of raw data
recording from ambient seismic noise. The centralized approach
is also explained to further comparison.

IV. DISTRIBUTED SYSTEM DESIGN

During the ANSI computing, two phases need message ex-
change between nodes. In the first phase, called the correlation
phase, nodes communicate every A minutes to cross-correlate
its pre-processed data with those from its neighbors; here,
there is no need of distributed computation because nodes
compute locally their results and only talk to neighbors for
sending pre-processed information. In the second phase called
the imaging phase, nodes calculate its partial maps locally, and
then communicate these results to produce the final velocity
map; here, a distributed approach to implement in sensor
networks is required.

In this section, we provide a detail description of each
phase; and particularly for imaging phase, we formulate the
distributed problem to aggregate the final velocity map. We also
compare this distributed approach with a standard centralized
solution.

A. Correlation Phase

The overview of the correlation phase is described in Fig. 4.
In this phase, every node reads raw data from a medium; for
example, a seismic sensor reads seismic waveforms in a field.
Once the node has completed A minutes of the reading process,
it activates the next steps: preprocessing, communication, Cross-
correlation and stacking process. Note that the reading process
is continuous and the other processes are done in parallel when
they are activated. The pre-processing of the data is made
in-situ, and it consists of preparing waveform data from each
node individually.

After the preprocessing, the node compresses the data into
an UDP (User Datagram Protocol) package® and broadcasts
the package to its neighbors. The node is also receiving pre-
processed data from its neighbors. Notice that this communi-
cation process may be asynchronous, and the system is able

3The maximum size of the UDP package is 65KB. However, with the
compression technique (using z/ib) and depending the band-pass filter is applied
in the data preparation stage, we achieve a compression rate between 50%
and 70% which is significant, and it helps to meet bandwidth constraints.
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Fig. 4: System design of Phase 1 (Correlation phase).

to handle this situation by using a time-stamp inside the UPD
package to let the nodes know which data to correlate. Every
node cross-correlates its data with each one of its neighbors
and stacks it. The stacking process is referred to add the results
up for each A\ minutes already processed. Algorithm 1 presents
the detail process for correlation phase.

Algorithm 1 Correlation phase algorithm

: Define 1" (Total time for stacking cross-correlation)
: Define window size A
: Activate thread reading and thread correlate
: Begin thread reading
: while 77— XA > 0 do
Read data D from medium;
if size of D is corresponding to A then
Activate thread prepare
end
: End thread reading
: Begin thread prepare
Apply down-sampling to D
Remove instrument noise in D
Apply Taper process in D
Apply Frequency whitening process in D
Compress data D
Add time-stamp to the compress data D
Broadcast D
: End thread prepare
: Begin thread correlate
21:  Receive data from neighbor ¢ (D;) and verify time-stamp
22:  if time stamp in D; is equal to time-stamp in D then

S S g
SOVRXIDINAELY 20

23: Decompress D;

24: Cross-correlate D; and D

25: Stack cross-correlation D; and D
26:  end

27: End thread correlate

In the algorithm 1, T is the total time we need for stacking
results of the cross-correlation. Usually, for getting meaningful
velocity maps, we need to stack hours to weeks, depending on
the node spacing and noise condition, of cross-correlated data
[34]; hence, this parameter is configurable in the system. For
our experiments, we stacked one week of cross-correlated data
and we got the velocity maps; however, the system correlate
in real time, hence, we can generate the velocity map at any
moment. A is the windows size for cross-correlation. We used
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a window size of five (5) minutes, but this parameter is also
configurable in the system. For performing cross-correlation
between data of different nodes, we use three different threads.
The first thread is called reading, and it is responsible for
reading data continuously and every A (5) minutes activating
the thread for pre-processing and broadcasting data. The thread
for pre-processing and broadcasting data is called prepare,
and it applies pre-processing techniques to the signal (section
III-A), compresses the data (through compression libraries),
creates the package to send, and broadcasts that package to its
neighbors. At the same time, the thread correlate is listening
for receiving packages from neighbor nodes. Once it receives
a package, it decompresses the package and verifies the time-
stamp to correlate the package data with its own data. Finally,
the thread stacks the correlated results for each neighbor. The
output of this algorithm is a set of cross-correlated signals
between a node and its neighbors.

B. Imaging phase

The overview of the imaging phase is described in Fig. 5.
After completing the correlation phase, every node has a set of
correlated signals between its neighbors and itself. The next
step is to apply FTAN techniques to obtain travel times (7)
from the cross-correlation results as was explained in section
III-D. Notice that every node calculates individually the travel
time between itself and each one of its neighbors.
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Fig. 5: System design of Phase 2 (Imaging phase).

After travel time calculation, every node constructs its own
phase travel-time surface based on its travel time measurements.
To construct the phase travel-time surface, the node needs to
interpolate its travel time data onto a finer and regular grid.
Algorithm 2 describes the process for calculating the phase
travel-time surface in each one of the nodes.

Algorithm 2 Phase-velocity Travel-time Algorithm (PTT)

1: Input: travel-time measurements 7 of node ¢

2: Interpolate all 7 of ¢ onto a Gx° x Gy° grid size = X y
3. Perform second interpolation of 7 with extra tension

4: for each point £ in the interpolated grid do

5.  Calculate V1

6:  Calculate Slowness Sk

7:  Calculate Azimuth Ay

8: end
9: Output: S and A vectors for node 7

Here, every node ¢ executes a interpolation of its travel time
measurements in a grid Gz° x Gy° of size x X y to get a
phase travel-time surface. This grid depends directly on the
location of the sensors (nodes) in real field. For example, our
simulated study, we used a grid of 1e=%° by 1e=6° because
our real experiments are located in Sweetwater, Texas. For our
real deployment, we used a grid of 2¢~°° by 2e~°° because
the deployment location only uses ten sensors in a smaller
area. However, these parameters are fully configurable in the
system. Details of how to fit this grid can be found in [1], [45].
In general, we need to choose an adequate finer, regular grid.
The degrees depend on the distance between stations. Larger
distances will have higher degrees. The grid also needs the
minimum and maximum latitude and longitude to calculate the
square regular grid to interpolate.

In the next step (line 4), the gradient of each travel-time
surface is computed at each spatial node. Using the eikonal
equation (equation 4), the magnitude of the gradient allows to
calculate the local phase slowness (5), and the direction of the
gradient can be used to estimate the azimuth (A).

Once every node completes the calculation of the local
phase slowness and azimuth vectors, the second round of
communication between nodes begins to calculate a velocity
map. Therefore, we need a technique for aggregating partial
information of slowness and azimuth inside each node into a
final phase velocity map.

There is exists different approaches to aggregate information
on sensor networks. The common one is the centralized
approach, where all nodes send its data to a central server
or SINK. An example is shown in Fig. 6(a). However, the
centralized approach introduces a high communication cost
in the network, and it is unsuitable for real-time systems.
In the distributed approach, Fig. 6(b), an aggregation tree
is constructed for aggregating the partial maps into the final
tomography. We are aware of consensus techniques for reaching
tomography consensus on sensor networks [30], [46], [47];
however, we chose tree-based aggregation because is faster on
real-time systems.

GV, &)
L=3
1 1 I=1
wh Wiy
wa1 (58, 5%9 w2 f=2
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Fig. 6: Topology comparison from centralized imaging and
tree-based distributing imaging.

We formally introduce the centralized and distributed
approaches in the following way: Let G(V,€) denote an
undirected connected graph (network) with node (sensor) set
V =(1,...,P) and edge set £, where each edge set {i,j} € €
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is unordered pair of distinct node.

1) Centralized Imaging: In the centralized approach, the ve-
locity map U¢ is calculated based on the slowness observations
of V in the whole network G as:

P

1 o . V¢

o = SC = argmin E |1SC —w;SE||,
1=1

®)
where S is the slowness calculation of node 4 in a centralized
fashion, which means the calculations are already collected
in a server. We want to minimize the difference between the
estimated final slowness S¢ and the aggregated slowness of
all nodes V. Note that P is the total number of nodes in the
network G. A vector of all ones is defined as 1. Because all
the slowness measurements are located in a central node, the
velocity map ¢ is reliable and has good resolution. However,
the cost of transmitting all measurements to a central place
can be significantly high (see Section VI-D.)

2) Distributed Imaging: In the distributed approach, node
i carries out communication only with its neighbors N; =
(jI{7,7}) € €. A randomly formed tree is created to aggregate
the velocity map in a bottom top fashion. In this tree-based
approach, the aggregation is performed by constructing an
aggregation tree, which in this case is formed randomly by
pooling neighbor nodes. The flow of data starts from leaves
nodes up to the sink and therein the aggregation done by parent
nodes.

Let £ be the number of levels of the aggregation tree. Let
Sl?i be the slowness vector or “partial map” of node ¢ in the
level [, where | € L and ¢ € V to be aggregated in a distributed
fashion. |S{| is the number of children nodes of node i in the
level .

The final velocity map 0% is estimated as:

1 aD . 11&D

HD = S* = argmin ||S” — Usoot||,
where Uy, = Uy 1 is the final slowness vector after the

aggregation process at the root node. The process starts from

leaves in a bottom-top fashion, and U ; is calculated for each

[ level and 7 node in the level as follows:

(6)

N ETE if |sh| =0
wy; = Ed (N
Zj:l'f Wi41,; +wy;  otherwise
SPif ‘SD =0
Uy =3 bl (8)
Z;; otherwise
o+ 58) + I s,
7/L ) ‘: y )
2= S s )

!
wy 4

where w;; and wi)l are the original weight assigned to the
partial map and the weight after aggregation respectively. The
original weight is assigned in eikonal tomography, and it is
related to the azimuth vector [31]. After the aggregation process,
the root node contains U,,,; that we can consider the final
velocity map.

We design an algorithm to aggregate the information, manage
cooperation between nodes, and communicate in a tree structure
through broadcasting.

In this approach, we can view the broadcast as a Breadth-
First Search (BFS) in the network. Every node ¢ is associated
with its level {(¢). This level is the length of ¢ shortest path to
the root, and it is computed during BFS in the spanning tree.
At the beginning, the level of every node i is {(i) = oo, and
the level of the root r is {(r) = 1. For creating the spanning
tree, the r node makes a broadcast. This message contains
the root level {(r) = 0. When a node ¢ receives a message
from a node j contained I(j), ¢ checks its (i) value to see if
() = oo. If this happens, 7 sets its level to I(7) = I(j) + 1
and forward the query to its neighbors; otherwise, ¢ stores the
level of j as I(j). The tree has been formed when all -values
are less than co. An example of tree is shown if Fig. 7.
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it 2 Nl et G i @®Root node

Fig. 7: Example of tree in the aggregation process [30].

The algorithm then computes the aggregation function in a
bottom-up fashion in the spanning tree. Every node has to wait
until it receives the information from its children, or reaches
maximum time. Then, the node aggregates the information and
sends it to all of its parents in the tree. In the end, the final
velocity map is displayed in the root node.

Algorithm 3 is called aggregated velocity map algorithm
(AVMA), and it illustrates the process from a single node point
of view. First, each node sets its own level in oo to start
forming the tree. Then, if the node is selected as root, it sets
its 1(¢) in one. In the emulation scenario, the root node is
selected randomly. In a real scenario, the root node is selected
during the deployment process. If the node is a root, it waits
until receiving the aggregated information from its children
(or, alternatively, reaches maximum time) and creates the final
phase velocity part by inverting the final slowness vector (line
10). If the node is not a root, it can be either a leaf or a parent
node. We know a node is a leaf when it does not have any
child. At the same time, each node registers its father in the
tree. If the node is a leaf (lines 15-16), it just needs to send
its information to its father. If the node is a parent node (lines
17-25), it broadcasts its level {(¢) and waits for aggregating
the information of its children with its own information. Once
the parent node finishes the aggregation process, it sends the
results to its father (line 22).

The aggregation process (AGG(S;(t),A;(t),w;(t) and
S;i(t),A;(t),w;(t)) defined in lines 8 and 21 is not a trivial
addition of values. For performing the aggregation of slowness
and azimuth vectors, we use statistical averaging. The statistical
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Algorithm 3 Aggregated velocity map algorithm (AVMA)

1: Define 7 as node number in the network.

2: Initialize node level {(z) = oo

3: if 4 is selected as root then

4 Setl(i)=0

Broadcast I(4) to its neighbors |V;|

While until receive from all children or reach MaxTime
Receive (S;(t),A;(t),w;(t)) from j where j € | N;|
Update S;(t + 1),A;(t + 1)w;(t +1) =

AGG(S; (1), A; (t)w; () and S:(£).As(£).aws (£))

9:  end while

10:  Calculate final phase velocity map U° = 1/5;(t)

11:  Output Y”

12: else

13:  Receive I(j) where j € |N;]

14:  Set own level I(i) =1(j) + 1

15: if i = leaf then

P

16: Send (S;(t),A;(t),w;(t)) to its father
17:  else
18: Broadcast () to neighbors | N;|
19: While until receive from all children or reach MaxTime
20: Receive (S;(t),A:(t),w;i(t)) from j where j € | Ny
21: Update S;(t + 1),A;(t + 1),w;(t +1) =
AGG(S]' (t),Aj (t),wj (t) and S; (t),Ai (t),wi(t))
22: Send (S;(t),A:(t),w;(t)) to its father
23: end while
24:  end if
25: end if

average used is a weighted average where the weight is
calculated based on azimuth vector collected from node ¢
and j (See Section 1V-B2).

V. SYSTEM ARCHITECTURE

In this section, we present the architecture behind the
distributed system design. Fig. 8 presents the overview of the
architecture inside each sensor node. The system has a modular
design. Each section is independent and can be monitored
through a visualization tool for quality control if needed.
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Pre-procesing

Seismic
Signal

Visalization and
Quality Control

'
'

'

'

'

'

'

'

'

'

'

'

'

'

| Stream
'

'

'

'

'

'

'

'

' Cross-correlation
'

L

Configuration
files

Fig. 8: Node system architecture.

A. Architecture Layers

The first layer shows the storage of the data. Inside each
sensor node, a MySQL database has been deployed. The

database records the raw stream data (for future uses if needed),
the result of cross-correlations, and the generated velocity map.
The second layer includes the correlation phase. An important
detail is that the node is cross-correlating data every \ time
continuously. Even if the nodes are cooperating to estimate the
velocity map, the cross-correlation continues. This ensures two
important features: (i) the continuity of the system work, and (ii)
the possibility of generating velocity maps if a correction in the
tomography parameters is needed. To explain better this point,
consider the following: the third layer (the imaging phase) is
executed after a time 7, also defined in the configuration file.
Suppose that the system is correlating data every A = 5 minutes.
After T' = 24 hours, the imaging phase calculates the velocity
map. If the experts realize that they need to do a modification
in any of the system parameters (FTAN, tomography, etc.),
they can change them and execute again the imaging phase.
This introduces flexibility in the system, and it is beneficial for
quality control purposes. Furthermore, the modularity feature
of our architecture allows to incorporate new algorithms to our
system; for example, we can use another type of tomography
by disabling the Eikonal Tomography module and activating a
new tomographic algorithm.

B. Hardware Specification

Our system was tested in two ways: (i) we deployed our
system in a network emulator, and we use the seismic data
from a previously collected deployment; and (ii) we deployed
our system in real devices, and we collected the data directly
from the field. The specifications of the emulator and real
devices as shown below.

1) Network Emulator: We selected CORE* network emu-
lator [48] for validating our system performance. We used
CORE emulator because the code developed over it can be
easily transferred to a Linux-based device virtually without
any modifications. This property is due to the tool allocates for
each network node a Linux virtual machine. CORE will allow
us to closely emulate the future deployment because we assume
the use of Linux-based, tiny but powerful computational units
(e.g. Beagle-bone Black, Raspberry Pi). Once the system was
successfully tested on emulation scenarios, we deployed special
sensors on the field for system real-test validation.

2) Field Devices: Every sensor or field device has a
global positioning system (GPS), three channel/component
seismometer (geophone), a Raspberry Pi 3 board, a battery and
a solar panel as shown in Fig. 9. Some hardware components
are housed into a waterproof box called R1+ for protecting
them from the harsh environment. The low-power GPS interface
provides the geo-location of the sensor node and a time-stamp
is used for the system to collect, synchronize and process the
seismic data. The three channels geophone is incorporated into
the system to detect the velocity of ground movements. Each
channel records its own data respect to its axis N, E, and Z or
directions North, East and Depth (vertical). The single board
computer (Raspberry Pi) is the core of the system because
is in charge of collecting and storing data, processing data
analytics, communicating with other units and providing raw

“http://cs.itd.nrl.navy.mil/work/core/
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and processed information to a visualization tool. We also
integrate a waterproof battery 11V and 99.9 Wh. The battery
is connected to a 10 Watt solar panel for giving to the system
renewable energy.

(a)

Fig. 9: (a) R1+ hardware details. (b) R1+ seismograph nodes
(for space reasons we omitted solar panels in this picture).

The detailed specifications of the main single-board computer
inside R1+ are presented in Table I

TABLE I: Single-board computer specifications

Raspberry Pi 3 Model B

CPU 1.2GHz 64-bit quad-core ARMv8
Memory 1 GB SDRAM
USB 2.0 ports 4 (via the on-board 5-port USB hub)

32 Gb Micro SDHC
10/100 Mbit/s Ethernet, 802.11n wireless,
Bluetooth 4.1

On-board storage
On-board network

VI. EXPERIMENTS AND SYSTEM EVALUATION

To evaluate our system performance, we conducted two main
experiment. The first experiment using CORE emulator, and
the second using R1+ devices in the field. Our goal was to
that validate our distributed algorithms not only balances the
computation load but also achieves low communication cost
and high data loss-tolerance.

A. Distributed ANSI results with CORE emulator

In this section, we present results of the correlation and ima-
ging phases in our proposed distributed cooperative computing
system using CORE emulator. We validated the system design
through the use of a real database of ambient seismic noise.
We used a time series data recorded by 75 sensors located in
the area of Sweetwater, Texas. The data were recorded between
March 21 and March 27, 2014.

We deployed the data of each sensor within virtual nodes
in the CORE emulator. We carefully designed the deployment
structure to match with the physical location of the real
sensors. The deployment structure is an important step as cross-
correlation of signals is needed. Fig. 10 shows the emulator
scenario for Sweetwater database.

As mentioned, the correlation phase is responsible for
calculating signal cross-correlation between neighbors. Two
examples of our results in the correlation phase are shown
in Fig. 11. These results were obtained after exchanging pre-
processed data with neighbors every five (5) minutes for seven
(7) days. From Fig. 11(a), we can observe the cross-correlation

Fig. 10: A deployment of 75 nodes over Sweetwater area in
CORE emulator.

function result between node 31 (red start on Fig. 13(b)) and
node 43 (yellow start on Fig. 13(b)) calculated by node 31.
These nodes represent the physical sensors 6T497 and 6X497
in the Sweetwater deployment. Fig. 11(b) illustrates another
cross-correlation between node 31 and 33 (black start on Fig.
13(b)) calculated by node 31. Node 33 corresponds to the
physical sensor 6T536. We configured the system to use a
frequency band of 2 Hz.

Correlation Nodes 31 - 43
T T T

Correlation Nodes 31 - 33
T T

T
L

Amplitude

=
—d
Amplitude

1
]
Lag Time (s)

(@ (b)

Fig. 11: Cross-correlation results between stations (a) 31 and
43 (1km distance), (b) 31 and 33 (2.5km distance). Grey area
represents group velocity arrival of the wave signal. The delay
time is shorter in (a) as stations 31 and 43 are physically closer
than stations 31 and 33.

These cross-correlation functions are used for every node to
apply a frequency-time analysis and obtain the estimated travel
time between them (section III-D). When nodes calculate their
travel times respective to their neighbors, the imaging phase
begins to calculate the velocity map. Results from the velocity
map are illustrated in Fig. 12. We plotted the velocity map over
the real location through Google Maps. Fig. 13(a) shows
the location of the Sweetwater area. Fig. 13(b) illustrates the
sensor locations and the final velocity map generated by our
system.

B. Distributed ANSI results with real devices

We deployed ten R1+ sensors on the University of Georgia
(UGA) campus during January 24th, 2018. The deployment
was located in an open area between three main buildings in
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Fig. 12: Velocity map (dominant frequency 2 Hz) for Sweet-
water Data using CORE emulator.
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Fig. 13: Location of the analyzed field data and velocity map
obtained from the proposed approach. (a) Sweetwater area
(red circle) location over Texas. (b) Zoomed in illustration of
stations and the velocity map.

which there are many pipes under the ground. The Google-
Maps location of the devices is shown in Fig. 14. The black box
in Fig. 14 shows the ten sensors (nodes) over the field; white
box illustrated the location of the nodes respecting each other.
We recorded ambient noise data for 7 hours and performed
cross-correlation, FTAN and Eikonal Tomography over these
data using our system.

From Fig. 15, we can observe the cross-correlation function
results between between node 1 (red node on Fig. 14) and node
3 (blue node on Fig. 14). Notice that even though the correlation
time was less than 1 day (7 hours), our system was able to
obtain identifiable cross-correlation picks that allows FTAN to
calculate the travel time between the specific two stations. The
final velocity map obtained by the Eikonal method is shown in
Fig. 16. Black diamonds represent the station locations plotted
over the velocity map.

The main idea of this experiment is to test the system
functionality and the ability to detect velocity variations
using real devices. Because the inter-station distance is small
(around 3 meters), we choose a high frequency to be analyzed.
The sampling rate of our sensors is 500 Hz. Based on the
Nyquist—Shannon sampling theorem, only the first 250 Hz
are usable. Furthermore, to avoid aliasing effect[49], only
frequencies up to 125 Hz can be adopted. From Fig. 16, in

9
‘e ® o ®

o o,

Fig. 14: Deployment of ten R1+ over University of Georgia
(UGA) Campus from Google Maps.
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Fig. 15: Cross-correlation result from Station 1 and Station 3
in the real deployment.
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Fig. 16: Velocity map (dominant frequency 35 Hz) obtained
from the deployment area at University of Georgia (UGA).

our application, the shallow subsurface velocity is around 1000
m/s. Considering a central frequency of 35 Hz, the wavelength
A (A = ¢/w, where ¢ is velocity and w is frequency) will
be about 28 m/s. Then, the seismic resolution is calculated
by A/4, resulting in our vertical resolution being about 7
m. Because eikonal tomography is based on computing the
spatial gradient of the travel time surface between sensors, the
result of this experiment can be unstable due to the number
of sensors used. However, the system functionality and the
sensors’ communication and computation show the possibility
of computing ambient noise tomography in networks. If more
sensors are added, results of eikonal tomography would be
more stable.

C. Robustness under unreliable links

To validate our results, we compare the cross-correlation
functions and the velocity map, which was generated by our
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system with the centralized setup. Using m, m* and m to
represent the centralized model, the proposed distributed model
and the mean value of m* respectively, we used the following
quantitative measures of distance from the centralized model
to evaluate the estimation quality

n n 1/2
er = |y (i —m)?/ Y (m; —m) (10)
i=1 i=1
ex =Y |mi—mi|/ Y |m]|. (11)
=1 =1

These represent the normalized root mean squared distance
and the average value distance, respectively.

Additionally, one of the important characteristics of our
system is the fault tolerance, and here, we validated it by
simulating node and link failure. We ran both correlation and
imaging phases with four different cases: case 1) No failure
case; all nodes communicate correctly and generate cross-
correlation functions and aggregate the velocity map; 2) 20%
of the nodes fail for 20% of the time; 3) 40% of the nodes fail
for 20% of the time; and 4) 60% of the nodes fail for 20% of
the time.
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Fig. 17: (a) Error e; and (b) Error e, for the different cases
of fault tolerance.

First, we described the case 1. Case 1 corresponds with
no failure in the system which implies every node correctly
computes and communicates all the time. Notice from Fig.
17(a) and Fig. 17(b) that errors e; and e, for correlation phase
are extremely low. This implies that the distributed solution is
almost equal to the centralized approach. The same situation
can be observed for Case 1 in Imaging phase. Both errors are
low because the resultant velocity map is almost identical to
the centralized map. Errors are less than 2%.

Since links between node are not always reliable, we design
the aforementioned cases 2, 3 and 4. Observe that for correlation

phase both errors are very low even when 40% of the nodes fail
for 20% of the time. This is due to nodes continuing to correlate
every A (5) minute, and the failures could occur during the
inactivity transmission time. Also, the correlation phase is more
stable since the stacking process continues stacking results for
a long time. However, in the imagining phase, because the
aggregation process requires all information of all nodes to be
sent to the root node, high failures can significantly increase
the error compared to a centralized setup. We plan to overcome
this issue by using another technique for combining results
in the velocity map such as a consensus algorithm between
nodes.

D. Communication Cost

In this section, we present the communication cost of the
two main phases of the ANSI system: correlation and imaging.
During the correlation phase, the dissemination of the pre-
processed data constitutes the major part of communication.
Meanwhile, during the imaging phase, the aggregation of
local slowness is the process that communicates the most. We
evaluated the communication cost of both phases and compared
them with a centralized algorithm. In the centralized scheme
for the correlation phase, every node sends its corresponding
raw data to a base station, or SINK, placed at the center of the
array to cross-correlate all data. For the imaging phase, every
node sends its slowness calculation to the same SINK station
to calculate the final velocity map.

Fig. 18 shows the communication cost in terms of number
of received messages for each node during the correlation
and imaging phases. Fig. 18(a) and 18(b) correspond to the
correlation phase of (a) the centralized approach and (b) our
distributed ANSI system respectively. Similarly, Fig. 18(c) and
18(b) correspond to the imaging phase of (a) the centralized
approach and (b) our distributed ANSI system.

In the correlation phase with centralized setup, all nodes
send the raw data to the SINK every five (5) minutes. Fig.
18(a) shows the number of messages after one (1) hour of
communication. Fig. 18(b) presents the communication cost
after one (1) hour of communication in the distributed approach;
Here, the communication cost is notably less in the whole
network as nodes only share information with neighbor nodes.
The number of received messages is directly proportional to the
number of neighbors. From our deployment structure (Fig. 10),
we can see the top left nodes (nodes 1, 2, 3, etc.) have more
neighbors than the bottom right nodes (nodes 75, 74, 73, etc);
this corresponds to the results obtained in Fig. 18(b) where
axis x and y represent the number of nodes in consideration.

In the imaging phase, we measured the communication cost
of sending the information of every local slowness to the SINK,
and we compared the result with the cost of the distributed
approach. Fig. 18(c) illustrates centralized imaging phase. For
comparison purposes, we selected as SINK the same node
that was selected as root node in the distributed approach.
From Fig. 18(d), we can observe the distributed imaging phase
communicates fewer messages than the centralized. Notice that
the communication cost in distributed imaging phase is higher
near and around root node, as the root node has more children
than parent nodes.
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Fig. 18: Communication cost in number of received messages as 2D heat map: (a) Centralized correlation phase, (b) Distributed
correlation phase, (c) Centralized imaging phase, and (d) Distributed imaging phase.

We also evaluate the communication volume of both phases
by measuring the number of megabytes transmitted by every
node in the network. Fig. 19 illustrates the communication
volume of both phases. In the correlation phase, the communi-
cation volume represents the megabytes transmitted over the
network. Observe that in the centralized setup the total volume
of communication is around 146Mb for completing 1 hour
of cross-correlation results. In contrast, the distributed setup
transmits around 50Mb for the same hour of cross-correlation
results which implies a reduction of approximately 66%. This is
basically due to nodes in the distributed approach cooperating
to calculate the cross-correlation with only neighbors. The
same situation occurs in the imaging phase; the distributed
approach reduces by more than 60% the communication volume
compared to centralized setup. However, because distributed
approach uses broadcasting to communicate with all neighbors,
if we measure the communication volume in the network in
terms of Mb received, the centralized approach may have equal
or less volume than the distributed approach.

E. Computational Cost

We evaluated the computational cost of processing corre-
lation and imaging phases by measuring the CPU times in
seconds for each one of the nodes. Fig. 20 illustrates computa-
tional cost measurements for centralized and distributed setups
imaging phase. As expected, our distributed system balanced

| Distributed @ Centralized
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I 49.5 Mb

Correlation Phase Imaging Phase

Fig. 19: Communication volume in the network. Correlation
phase (after one hour of cross-correlation) and Imaging phase.

the computational cost as every node calculates its own results
and shares them to cooperate in the final result.
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Fig. 20: Computational Cost. X-axis represents number of
nodes.
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FE. Effects of Topology

Topology plays a key role in distributed systems like the
one presented in this paper. Since the method communicates
only with its immediate neighbors, the topology decides how
fast the information diffuses in the network. Therefore, the
correlation phase on a strongly connected topology generates
more information of travel times from immediate neighbors
and it may impact the quality of the final velocity map. More
neighbors imply more resolution in the velocity maps because
there are more calculated travel times to use for interpolating
the phase travel-time surface (Sections IV-A and IV-B.).

In traditional ambient noise tomography imaging, the cross-
correlation of the signals is performed between all pairs of
sensors, which requires O(NN?) computation. All-to-all cross-
correlation represents a large volume of data and the use
of nodes as multi-hop nodes in the network. Our system
methodology aims to reduce computation and communication
complexity by cross-correlating only with neighbor nodes in
the mesh network (e.g. K neighboring sensors), which only
requires O(K N) correlations. In strongly connected topologies,
the velocity maps result will be almost the same as computing
all-to-all cross-correlation. In sparse topologies, when we are
only able to observe a subset of entries, the resolution of the
recovered tomography may be reduced. However, when the
underlying true map varies smoothly (which can be viewed
as a low-dimensional structure), the quality of the recovered
tomography using partial data will not degrade much from
that recovered using the full data. Nonetheless, in our future
work, we plan to study some approximation techniques, like
matrix completion[50], to recovered cross-correlation from no-
neighbor nodes without transferring a large amount of data.

VII. DISCUSSION

In this section, two main aspects of our distributed approach
are discussed: (i) the reliability of the eikonal tomography result
compared with traditional tomography; and (ii) the trade-off
between the centralized and distributed scenario.

The main purpose of our in-field experiment is to test the
system ability to detect velocity variation using real devices.
As mentioned, due to number of sensors limitations, the
experiment was made with ten units only. The results can
be unstable due to the short station-separation distance. To
measure the resulting stability, we also performed a traditional
tomographic method based on straight-ray approximation [32],
which can be done only in a centralized fashion, and compared
the results. This is a typical comparison to validate ambient
noise tomography results [31]. Figs. 21(a) and (b) show the
velocity maps obtained by eikonal tomography and straight-ray
tomography respectively at a dominant frequency of 35Hz.

Agreement between the velocity maps produced with eikonal
tomography and the traditional straight-ray tomography is
generally favorable, but there are some regions with significant
disagreements. The main differences likely occur due to the
regularization applied in the straight-ray inversion, which tends
to distort the velocities near to the edge of the map. This was
already reported in [31]. However, from these results, we can
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Fig. 21: (a) Eikonal Tomography from UGA deployment
with dominant frequency of 35Hz (b) Traditional straight-ray
tomography of the same deployment at 35Hz.

see our system is able to recover subsurface velocity differences
in a distributed fashion. As mentioned in the system architecture
(section V), other new distributed tomographic methods can be
adapted into the system by changing the eikonal tomography
module for a new tomographic technique; an adaptation of the
input tomographic parameters may be needed too.

Finally, a discussion of the trade-off between the centralized
and the distributed approach is presented here. For the image
phase, we have made an extensive comparison with the
centralized approach in [30]. Notice that because we have
used real datasets, there is no ground truth for the velocity of
Sweetwater Data and/or UGA deployment. Hence, we focus
on the comparison of the proposed method with the centralized
processing scheme, which can be used as a benchmark that fully
utilizes the data available. Interpretation of this data requires
in-depth knowledge of geophysics and is out of the scope of
this paper.
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Fig. 22: Velocity map of Sweetwater Database. (a) Centralized
approach. (b) Distributed approach.

Figs. 22(a) and (b) show the final velocity map of the
Sweetwater area analyzed in this paper using a central-
ized approach and distributed approach respectively. There
are some disagreement between both maps mainly because
the centralized method utilizes more information on cross-
correlations. However, the mean squared distance (e;) and
average value distance (e2) between both approaches are less
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than 15%, and we can notice a similar pattern in both maps
and a differentiation in the structures. This indicates that the
distributed method is able to recover similar results than the
centralized approach. The main advantage of the distributed
method is the communication cost is significantly reduced,
and the bandwidth and network constraints are met. The
disadvantage relies on the fact of total failure of nodes. As
it was explained in Section VI-C, the system is resilient to
package lost; however, if a significant portion of the nodes
in the network dies, the result will be considerably affected.
On the other hand, the centralized approach guarantees more
accurate results, but the cost of transferring all data to a central
place is very high in terms of sensor networks.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented an innovative distributed co-
operative in-network system for real-time seismic imaging
generation through ambient noise data. We integrated in-
network processing techniques to correlate the noise signals
between sensors and derive the phase velocity under the limited
network resource constraints. We showed that computing
information at the node level and cooperating with neighbors
makes it possible to illuminate near-surface velocities of the
earth. We showed that both system phases produce results close
to the centralized approach, and they balance communication
across the network. Furthermore, we also tested our algorithms
under field conditions of sensor networks, such as loss of
packages, and showed they are robust in terms of loss tolerance.

We plan to extend this work through the use of other
techniques, such as consensus algorithms for combining
information in the imaging phase. With the results obtained
using real devices, we are also looking forward to focusing
on the integration of new algorithms to the distributed ANSI
system for more applications like pipe network mapping and
leakage detection. Other seismic waves measurements and
direct sub-surface modeling can be included in this study.
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