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S U M M A R Y
We present a migration method that does not require a velocity model to migrate backscattered
surface waves to their projected locations on the surface. This migration method, denoted as
natural migration, uses recorded Green’s functions along the surface instead of simulated
Green’s functions. The key assumptions are that the scattering bodies are within the depth
interrogated by the surface waves, and the Green’s functions are recorded with dense receiver
sampling along the free surface. This natural migration takes into account all orders of multi-
ples, mode conversions and non-linear effects of surface waves in the data. The natural imaging
formulae are derived for both active source and ambient-noise data, and computer simulations
show that natural migration can effectively image near-surface heterogeneities with typical
ambient-noise sources and geophone distributions.

Key words: Interferometry; Surface waves and free oscillations; Wave scattering and
diffraction.

1 I N T RO D U C T I O N

Backscattered surface waves can be imaged for the near-surface het-
erogeneities (Snieder 1986). The typical strategy is to (1) linearize
the relation between the scattered data d and the model perturbation
m (i.e. heterogeneities map) under the Born approximation d = Lm,
and then (2) find the approximate solution by either an iterative opti-
mization method (Riyanti 2005; Campman & Riyanti 2007; Kaslilar
2007) or by applying the adjoint (Snieder 1986; Blonk et al. 1995;
Campman et al. 2005; Yu et al. 2014) of the modeling operator
L† to the scattered data d to get the migration image mmig = L†d.
In all cases, the two key assumptions are that the velocity model
(typically, just the smooth component of the surface wave veloc-
ity distribution) is known and the weak-scattering approximation is
invoked. For many practical applications, the background velocity
model is assumed to be a layered medium. This methodology has
found a growing number of uses in earthquake, exploration and en-
gineering seismology (Snieder 1986; Blonk et al. 1995; Wijk 2003;
Campman et al. 2005; Riyanti 2005; Campman & Riyanti 2007;
Kaslilar 2007).

There are two significant limitations with the above surface wave
inversion methods: the Born approximation is invalid if there are
strong velocity contrasts and the wavefields in complex regions of
Earth cannot be accurately modelled without prior knowledge of the
elastic parameters of Earth. In either case, the resulting image can
contain significant errors. To eliminate these problems, we present
a surface wave imaging method named natural migration (Schuster
2002; Brandsberg-Dahl et al. 2007; Sinha et al. 2009; Xiao &

Schuster 2009; Hanafy & Schuster 2014) that does not require the
Born approximation or the need to know the velocity model. Instead
of computing the Green’s functions with an assumed background
velocity model, we estimate the actual Green’s functions G(xg|xs)
of the earth at the geophone locations xg for either an active point
source at xs, or a virtual point source at xs computed by cross-
correlation and stacking of ambient-noise records. These estimated
Green’s functions contain all of the effects of scattering, anisotropy
and higher order modes in the data eliminating the need for compute-
intensive elastic modeling operations (Schuster 2002). The Green’s
functions are then used to create the exact modeling operator L that
emulates the data, so there is no need to know the velocity model
to find mmig = L†d. However, the trial image points are restricted
to be at the surface, so the migration image provides the scatterer
distributions projected from depth to their surface locations. The
limitation is that the sampling of the migration image depends on
the density of receiver arrays along the free surface. This limitation
is mitigated by the recent availability of dense seismic arrays, such
as USArray and the Long Beach array (Hand 2014). Our synthetic
simulations show that natural migration of both active and passive
source data can provide accurate images of the projected distribu-
tions of scatterers onto the Earth’s surface as long as the scatterers
are within the depth that is sensitive to the surface waves.

In this paper, we derive the natural migration equation, and ap-
ply the proposed imaging method to synthetic data. The migra-
tion equation starts with the Lippmann–Schwinger equation, but
does not assume the Born approximation. Instead of assuming a
smooth background model, it uses the empirical Green’s functions
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recorded in the data. Thus, the migration equation is valid for any
type of strong velocity contrast. The next section assesses the ef-
fectiveness of natural migration on 3-D elastic data generated for
a simple fault model. The last section provides a summary of our
work.

2 T H E O RY

2.1 Migration of backscattered surface waves

For an inhomogeneous 3-D elastic medium, the scattered wavefield
can be represented by (Hudson & Heritage 1981; Snieder & Nolet
1987)

ui (xs, xr ) =
∫

V
γl (ω)

{
�ρ (x) δpkω

2Glp (x|xs)

− �ckjpq (x)
∂

∂xq
Glp (x|xs)

∂

∂x j

}

× G0
ki (x|xr ) d3x, (1)

where the particle-displacement vector is given by ui (xs, xr ), xs and
xr are, respectively, the source and the receiver positions. The sub-
script indices indicate one of the components of the displacement-
vector wavefield, where, for example, i have the values 1, 2 and 3 for,
respectively, vertical, horizontal-x, horizontal-y components. Ein-
steinian summation over dummy indices is assumed. The variable
ω represents the angular frequency, Gij(x|xs) is the monochromatic
Green’s tensor for the jth particle-component point source at the po-
sition xs and the i—the component receiver at x and G0

i j (x|xr ) is the
transmitted-wave Green’s tensor (i.e. it only contains the transmit-
ted wavefield without backscattering). The dependence of wavefield
variables on the harmonic frequency ω is silent. Here, �ckjpq(x) rep-
resents the arbitrary distribution of elastic perturbations, �ρ is the
distribution of the density perturbations, δpk is the Kronecker delta
function which has the value one when p = k and zero otherwise
and γ l(ω) is the source-wavelet spectrum. The volume integral in
eq. (1) is over the model volume where perturbations do not coincide
with the source or receiver locations. We can derive the migration
equation as (see Appendix A for details)

m (x) =
∫∫∫

ω2
(
1 + δpk

)
γl (ω) Glp (x|xs) G0

ki (x|xr )

× ui (xs, xr ) dxsdxr dω. (2)

This migration equation can be used to image density and elastic-
parameter perturbations.

For surface waves, the image m(x) in eq. (2) can be evaluated
on the free surface to produce 2-D images which are projections
of the scatterer’s locations onto the free surface (Snieder 1986;
Blonk & Herman 1994; Campman et al. 2005). These projections
are appropriate for scatterer’s at shallow depths that are detectable
by surface waves. We shall denote these projections of scatterer’s
on the surface as migration shadows. Due to the variable sensitivity
with depth for different frequencies, the migration images can be
separated according to different frequency bands:

m
(
x, ω′) =

∫∫∫ (
1 + δpk

)
βω′ (ω) γl (ω) Glp (x|xs) G0

ki (x|xr )

× ui (xs, xr ) dxsdxr dω, (3)

where the bandpass filter βω′ (ω) is a function designed to smoothly
taper the data and Green’s tensors around the central frequency ω′.

The ω2 is considered part of β for brevity. A further decomposition
is based on the modes for propagation of incident and scattered
wavefields. In addition, eq. (3) can be simplified by ignoring the
amplitude scaling factor (1 + δpk). For example, if we consider
only Rayleigh-wave scattering due to the Rayleigh-wave incidence
wavefield, the migration equation becomes for p = k = l = i = 1

m11

(
x, ω′) =

∫∫∫
βω′ (ω) γ1 (ω) G11 (x|xs) G0

11 (x|xr )

× u1 (xs, xr ) xsdxr dω. (4)

This equation is applicable to active-source data. However, special
care must be taken because the interpretation of migration shad-
ows is not appropriate for body waves that might not travel along
the surface. Therefore, body-wave arrivals must be removed from
the data prior to migration. In addition, the source wavelet γ l(ω)
must be estimated. Fortunately, virtual gathers computed from pas-
sive data cross-correlation tend to be exclusively dominated by only
surface waves and the phase of the source wavelet γ l(ω) is zero
after ambient-noise cross-correlation. Therefore, this method is ap-
plicable to surface waves in virtual gathers without the need for
muting body-wave arrivals. In the following section, we derive the
migration equation for passive data.

2.2 Natural migration of surface-wave backscattering
in passive data

For surface waves, the time-symmetric ambient-noise cross-
correlation tensor Cij is defined as

Ci j (xA|xB, ω)
def= 1

2

(〈
di (xA, ω)d j (xB, ω)

〉
+

〈
di (xA, ω) d j (xB, ω)

〉)
, (5)

where di (xA, ω) and di (xB, ω) are the ith components of the ob-
served particle-displacement at the locations xA and xB , respec-
tively. This cross-correlation tensor is related to the Green’s function
by the interferometric equation (Weaver & Lobkis 2004; Snieder
2004)

μiωCi j (xA|xB) = Gi j (xA|xB) − Gi j (xA|xB), (6)

where i = √−1 and μ is a scalar factor under the far-field approx-
imation, and it depends on the geometrical configuration of the
stations, the mode of propagation and the propagation velocity and
the distribution of noise sources. If the scalar factor is ignored, the
amplitudes of the empirical Green’s function will not be correct.
We will disregard this scalar factor in subsequent derivations, keep-
ing in mind that the dynamic information (i.e. amplitudes) in the
migration images may be imprecise. Nevertheless, the geometric
information of the migration images (i.e. locations of scatterers and
fault maps) is still reliable.

If we consider an equation that has a structure similar to that
of eq. (4) but replacing the Green’s functions with ambient-noise
cross-correlations, we get

ηpk

(
x, ω′) def= −

∫∫∫
ω2βω′ (ω) γl (ω) Clp (x|xs) C0

ki (x|xr )

× ui (xs, xr ) dxsdxr dω, (7)

where C0
ki are the correlations containing only the direct surface

waves (i.e. backscattering events are muted). By substituting the
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right-hand side of eq. (6) into eq. (7), we get four terms

ηpk

(
x, ω′) =

∫∫∫
βω′ (ω) γ1 (ω) { Glp (x|xs) G0

ki (x|xr )

− Glp (x|xs)G0
ki (x|xr ) − Glp (x|xs) G0

ki (x|xr )

+ Glp (x|xs) G0
ki (x|xr ) } ui (xs, xr ) dxsdxr dω. (8)

Note that the fourth term is the same as the migration eq. (4) for
active source data, and the first term is equivalent to the fourth term
considering the time symmetry in the cross-correlations. The contri-
bution of the other two terms to the migration image ηpk (x, ω′) can
be eliminated by muting relevant portions of the data ui (xs, xr ) , as
will be demonstrated with the numerical examples in the following
sections.

3 N U M E R I C A L E X A M P L E S

3.1 Ambient-noise simulation

We will use numerical models and synthetic ambient noise to visu-
alize and analyse how recorded ambient noise can be migrated to
produce an image of subsurface heterogeneities. The 3-D model in
Fig. 1 is used to test the effectiveness of natural migration in imaging
buried faults near the surface. The model has two layers where the
thickness of the shallow layer changes 48 m due to fault displace-
ment, where the shallow layer is 15 m thick at the up-thrown side
of the fault and 63 m thick along the down-thrown side. Random
scatterers are placed throughout the medium to generate realistic
scattering as often observed in field records. The P-wave velocity
model is determined by Vp = √

3Vs , and density is constant with
the value ρ = 2.0 kg m−3. The grid spacing of the model is 3 m in
each direction.

Figure 1. Top: a 3-D model used to synthesize ambient noise from sources
placed around the edges of the model, which are denoted by the star shapes.
The point sources (monopoles with vertical velocity component) are ran-
domly distributed on the free surface around 30 m away from the recording
array. Bottom: the deeper half of the model, where the top view shows a
buried fault and the change of velocity across the fault.

Random noise sources are excited around the model to gener-
ate band-limited random noise, as shown in Fig. 1 (top). Random
time functions are generated with a uniform amplitude distribution
between −1 and 1, and then we bandpass filter the time functions
to the desired range of frequencies. For the numerical examples in
this paper, source functions are bandpassed between 1 and 20 Hz,
and the time interval is 0.3 ms. Synthetic ambient noise is gener-
ated by staggered-grid finite-difference simulations of the isotropic
elastic wave equation (Virieux 1986) with a free-surface boundary
condition (Gottschämmer & Olsen 2001).

The z-component of the simulated ambient noise is recorded
along the surface using an array of geophone stations. To ensure the
validity of the far-field approximation used in the previous deriva-
tions, the noise sources are randomly distributed 30 m away from
the recording array during the simulations. The random locations
of sources insure that the noise has uniform angular coverage,
which will enhance the accuracy of the empirical Green’s func-
tion computed by cross-correlation. In cases of non-uniform angu-
lar coverage, scatterers within the random media can enhance the
angular coverage and, therefore, improve the accuracy of the empir-
ical Green’s functions (Larose et al. 2006).

About 34 min of noise were simulated and recorded, where the
total recording time is divided into smaller 1.5-s-long records. Each

Figure 2. Fault-related backscattering as it appears on synthetic data (A) and
ambient-noise cross-correlations (B). The yellow box highlights backscat-
tering from the buried fault. Note that grey-scale images in the paper are
variable density plots where extreme positive values are shown as white,
negative values are in black and the grey colour indicate zero value.
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Figure 3. Muting of cross-correlated traces (A) to separate the direct (B)
and scattered (C) events for natural migration. The first period (0.1 s) is
muted in the traces prior to migration.

record is simulated independently with five z-component noise
sources emitting noise simultaneously; each source has a differ-
ent signature as described above. The number of noise sources and
the length of each record are empirically determined to enhance
the quality of the empirical Green’s functions computed by cross-
correlating the noise records. A similar quality can be achieved in

Figure 4. Natural migration image overlaying the 3-D model, where the
grey-scale image delineates the fault projected to the surface.

Figure 5. Top: bandpass time-domain filters used for migration and Bottom:
their corresponding spectra.

field passive seismic experiments by recording for a long time (e.g.
several days for the Long-Beach data).

See Appendix B which illustrates the detection of backscat-
tering using cross-correlation for a simple 2-D model. Backscat-
tered events are often difficult to observe in ambient-noise cross-
correlations due to the overwhelming noise and cross-correlation
artefacts. However, comparing synthetic data in Fig. 2(A) with
ambient-noise cross-correlation records in Fig. 2(B), we can ob-
serve backscattered events in both figures. Migrating the backscat-
tered events in one virtual gather will partially image the subsurface
faults and heterogeneities, and the images will be consistent from
one shot to another. This means that when the images from different
gathers are stacked they constructively interfere to form a coherent
image of the heterogeneities.

Spurious events overlap with the backscattered events in the
cross-correlations in Fig. 2(B). Migrating the spurious events in
the gather will introduce noise into the migration image. However,
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Figure 6. Snapshots of laterally traveling Rayleigh waves using the bandpass filters as the source signatures. Note, the change of depth of penetration as a
function of frequency contents of bandpass range of frequencies.

such noise is unlikely to be consistent from virtual shot to another.
Therefore, when the images are stacked noise will destructively in-
terfere and be attenuated. We assume that this is also the case for
deep virtual reflections in the cross-correlations.

3.2 Natural migration procedure

Here, we describe the steps used to compute the natural migra-
tion image from ambient-noise records, using the passive-data nat-
ural migration equation (i.e. eq. 7). First, the recorded noise is
spectrally normalized (Duret & Forgues 2015) (i.e. amplitudes in
the frequency domain are set to one) and then cross-correlated to
generate the empirical Green’s functions. The normalization and
cross-correlation produce spectrally balanced Green’s functions
with zero-phase wavelet, so that it is suitable to assume γ l(ω) ≈ 1
in the migration eq. (7). Next, we normalize the Green’s functions
in a virtual source gather by the maximum absolute value of the am-
plitudes in the gather. We observe that this normalization partially
corrects for the amplification effect that depends on the velocity
near the virtual source.

The second step is muting and wavefield separation. The samples
near the zero lag are muted to avoid near-field strong artefact.1 We
empirically find that muting one period (estimated roughly from the
transmitted waves as shown in Fig. 3A) is sufficient to avoid strong
artefacts near sources and receivers.

To compute the natural migration image, we need to separate
transmitted (i.e. direct) and scattered wavefields in the empirical
Green’s functions so that

Cki (xA|xB) = C trans.
ki (xA|xB) + C scat.

ki (xA|xB), (9)

where C trans.
ki (xA|xB) contains the transmission events and

C scat.
ki (xA|xB) contains only the scattered events. This separation

can be performed by muting, where an average velocity vavg. and

1
This is related to singularities in the integration domain.

the period T of the direct arrivals are estimated and then used to
design the muting function,

τmute (x, xs) = |xs − x|
vavg

+ T (10)

where the transmitted events are above the muting function and the
scattered waves are below the function as shown in Figs 3(B) and
(C), respectively. Smooth tapering is recommended when applying
the mute.

The variables in the migration eq. (7) are defined using the sepa-
rated wavefields as follows:

ui (xs |xr ) =
∑

k

C scat.
ki (xs |xr ), (11)

C0
ki (x|xr ) = C trans.

ki (x|xr ), (12)

Clp(x|xs) = C trans.
lp (x|xs) + C scat.

lp (x|xs). (13)

Note the summation in eq. (11) over the k index. In our numerical
example, however, we do not record horizontal components and
therefore we evaluate u1(xs |xr ) = C scat.

11 (xs |xr ) only.
Now, we compute the natural migration image using eq. (7) and

substitute the separated transmission and scattered events respec-
tively into the empirical Green’s functions and backscattered data
(i.e. ui). Fig. 4 shows the natural migration result for the simple
example above, where the migration image delineates the buried
fault. The fault image is a positive and negative doublet where the
positive values (white colour) identifies the slow part of the model
and the negative (black colour) identifies the fast side of the fault.
The rest of the image has near zero values (grey) or filled with
minor noise. Such noise is related to imperfect reconstruction of
the Green’s function, and it can be reduced with longer passive data
recording, and a more uniform distribution of noise sources.

Surface waves travel laterally along the free surface, where the
horizontal boundaries between the layers do not cause backscatter-
ing. Therefore, the proposed method cannot directly image changes
in the medium along the depth axis, like boundaries between layers.
This is useful when the objective of the seismic experiment is to
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Figure 7. Natural migration images for different filters, where the decreas-
ing dominant frequency of the filter acts as pesudo-depth. Lower frequency
filters are displayed deeper and the higher frequencies are on top of the 3-D
natural migration volume. The red arrows indicate the fault image.

image heterogeneities like faults and scatterers with disregard to the
layering details in the subsurface.

Natural migration images are evaluated at geophone stations on
the free surface at z = 0. Therefore, they do not directly indicate
the depth of the anomalies. To develop a sense of depth, we design
many bandpass filters βω′ with increasing peak frequency ω′, where
the different frequency bands can be associated with different depth
ranges. The filters are chosen to cover the spectrum of the data,
using any filter of choice. Frequencies are avoided that violate the
Nyquist sampling interval associated with geophone spacing.

Fig. 5 illustrates a set of bandpass filters in the time and frequency
domains. By solving the elastic wave equation using the average
velocity of the first layer, we can estimate the sensitivity of the
Rayleigh waves to different depths of velocity anomalies, as shown
in Fig. 6. For filters 1–3, most of the energy is concentrated at depths
shallower than that of the fault (15 m) and is unable to detect the
fault. Filters with a lower range of frequencies, on the other hand,
show the significant sensitivity of low-frequency Rayleigh waves to
deeply buried velocity heterogeneities.

We also compute a collection of migration images for different
frequency ranges that collectively gives an indication of relative
depths and sizes of the detected anomalies. Fig. 7 shows the natural
migration images as a function of the filter’s range of frequen-
cies. High-frequency filters 1–3 do not detect the fault, due to the
Rayleigh wave’s shallow depth of penetration. The remaining low-

Figure 8. A migration cross-section demonstrating the detection of the
fault as a function of pseoudo-depth (filter number), where images of higher
frequency filters are displayed at the top and the lower ones are at the bottom
of the cross-section. The arrow indicate the top of the fault at ω′ = 15 Hz,
and the dashed line indicates the trace of the fault.

frequencies filter detects the fault. Fig. 8 shows a cross-section
migration image for y = 150 m, where the fault is seen clearly using
filters from 4 to 9.

The same numerical experiment was repeated twice for the same
3-D model but with fault depths of 21 and 30 m, and the corre-
sponding natural migration images are shown in Figs 9 and 10,
respectively. With increasing depth, the image of the fault becomes
confined to lower frequencies. In the natural migration images, dif-
ferent frequencies detect the fault with different spatial resolution,
where the filters with lower frequency ranges show the fault with
lower resolution. This demonstrates the trade-off between depth of
penetration and lateral resolution, which depends on the relationship
between frequency and depth of penetration of Rayleigh waves.

In general, the effectiveness of natural migration is limited by
the strength of the backscattered surface waves. This subject is cov-
ered by Chai et al. (2012, 2014). We recommend using a synthetic
data test, as the one demonstrated above, for each case where nat-
ural migration is applied to assess the abilities and the limits of
the method in the given geological settings, noise distribution and
survey geometry. In addition, applications of the method should
be in conjunction with other independent methods for studying the
subsurface, like surface wave tomography (Lin et al. 2008). This is
to validate the interpretation of the natural migration images, and to
reject possible false positives generated by uncorrelated noise and
imperfect reconstruction of empirical Green’s functions.

4 C O N C LU S I O N S

The migration equations are derived for imaging backscat-
tered waves using virtual Green’s functions computed by cross-
correlating ambient noise. The benefits of this approach are that the
migration velocity model is not needed for estimating the migra-
tion Green’s functions and the actual physics of wave propagation
are used for inversion. In addition, the Born approximation is not
required and the computation of the adjoint operator requires min-
imal computational resources. The key limitations are that a dense
receiver coverage is required to construct a finely sampled image,
and the current implementation is restricted to migration images on
the recording plane.
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Figure 9. Natural migration images for a fault model where the fault is
21 m deep.

Application of natural migration to the Long Beach array and
USArray (AlTheyab et al. 2014) will be the focus of future pub-
lications. The backscattering migration provides complimentary
high-wavenumber information to the low-wavenumber transmis-
sion tomographic image as is done in exploration seismology. One
possibility in the future, is to invert for the perturbation in the least-
squares sense, instead of using the migration equation (the adjoint).
This however is non-trivial to compute for interferometric virtual
gathers. In this paper, we migrated the backscattered events into
pseudo-depths that depends on the frequency ranges of the data.
Conversion to absolute depth requires some prior knowledge of the
subsurface velocities, and such conversion is the subject of an ongo-
ing research. Another direction of interest is to analyse the coupling
between incident Rayleigh-wave and Love scattered waves and vice
versa.
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Figure 10. Natural migration images for a fault model where the fault is
30 m deep.
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A P P E N D I X A : E F F E C T O F E L A S T I C
H E T E RO G E N E I T I E S O N T H E NAT U R A L
M I G R AT I O N I M A G E

From eq. (1), the scattered wavefield due to density perturbations
can be quantified using the following equation

ui (xs, xr ) =
∫

ω2δpkγl (ω) Glp (x|xs) G0
ki (x|xr )

× �ρ (x) d3x. (A1)

The corresponding migration equation (Liu & Tromp 2006) is

�ρ̃ (x) =
∫ ∫

xr �=x

∫
xs �=x

ω2δpkγl (ω) Glp (x|xs) G0
ki (x|xr )

× ui (xs, xr ) dxsdxr dω, (A2)

where the horizontal bar above the integration kernel indicates the
complex conjugate of the kernel and the spatial integration is over
the source and receiver planes that exclude the imaging point. This
avoids integrating over singular points in the Green’s tensors. For
conciseness, we omit the definition of the integration domain over
sources and receivers throughout the manuscript.

Similarly, the scattered wavefield due to elastic tensor perturba-
tions is

ui (xs, xr ) = −
∫

γl (ω) (x)
∂

∂xq
Glp (x|xs)

× ∂

∂x j
G0

ki (x|xr ) �ckjpq d3x, (A3)

so that the adjoint integral is

�̃ckjpq (x) = −
∫∫∫

γl (ω)
∂

∂xq
Glp (x|xs)

∂

∂x j
G0

ki (x|xr )

× ui (xs, xr ) dxr dxsdω, (A4)

where �̃ckjpq is the image corresponding to the perturbation of the
tensor element indicated by the subscripts. Considering the sum of
migration images for j = q, the migration equation above can be
approximated in the far field by

∑
j

�̃ckjpj (x) ≈
∫∫∫

ω2

v2 (x)
γl (ω) Glp (x|xs) G0

ki (x|xr )

× ui (xs, xr ) dxr dxsdω, (A5)

where v (x) is the phase velocity for that mode of propagation (e.g.
the phase velocity for monochromatic Rayleigh waves when mi-
grating z-component backscattering using z-component incident
wavefield). Here, the spatial derivatives are approximated, un-
der the far-field approximation, for a single mode of propagation
using∑

j

∂

∂x j
Glp (x|xs)

∂

∂x j
G0

ki (x|xr )

≈ − ω2

v2 (x)
Glp (x|xs) G0

ki (x|xr ) . (A6)

Therefore,

v2 (x)
∑

j

�̃ckjpj (x) =
∫∫∫

ω2γl (ω) Glp (x|xs) G0
ki (x|xr )

× ui (xs, xr ) dxr dxsdω. (A7)

The right-hand side above is the same as the migration equation for
density (eq. A2) when p = k. This indicates that when we migrate
the backscattered data using eq. (4), we can image both density and
velocity perturbations.

The sum of the images for density perturbations and the elastic-
tensor perturbations (where j = q) gives the natural migration
image

m (x) = �ρ̃ (x) + v2 (x)
∑
j,p,k

�̃cpjk j (x)

=
∫∫∫

ω2
(
1 + δpk

)
γl (ω) Glp (x|xs) G0

ki (x|xr )

× ui (xs, xr ) dxr dxsdω, (A8)

In other words, the natural migration image is the sum of several
images, each image is a geometric representation of the density
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or elastic modulus perturbations. As a result, values in the images
might not be immediately useful, due to the entangled contributions
from different physical variables and the fact that the adjoint integral
is not the inverse of the forward scattering equation. Nevertheless,
the geometric information in the image is representative of the
heterogeneities in the subsurface.

In our derivation above, we deliberately ignored contributions to
the images from the elastic-tensor perturbations for j �= p to avoid
spatial derivatives, which numerically requires a dense sampling
of naturally recorded Green’s functions. This does not necessarily
mean that the perturbations in those elastic-tensor components can-
not be imaged using eq. (4). Further research is needed to understand
the effects on those components in the migration image.

A P P E N D I X B : B A C K S C AT T E R E D
E V E N T S I N A M B I E N T - N O I S E
C RO S S - C O R R E L AT I O N S

In this section, we illustrate how backscattered events are detected
in the empirical Green’s function.

Empirical Green’s functions for the zz-components (i.e. C11) are
computed by cross-correlating the recorded ambient-noise traces
according to eq. (5) as follows. For a given virtual source located
on one of the stations, the recorded trace is referred to as the mas-
ter trace. For each recording, the master trace is cross-correlated
with the trace corresponding to a virtual receiver. Then, the cross-
correlations for the given virtual source and receiver are stacked to
form the empirical Green’s function for the virtual source–receiver
pairs.

Fig. B1 depicts an empirical Green’s function for the simple 2-D
case where a homogeneous model has a single scatterer. The promi-
nent features in the gather are the transmitted waves highlighted by
the red dotted lines intersecting at the location of the virtual source
at the zero-lag time. The rest of the empirical function is domi-

Figure B1. A shot gather of an empirical Green’s function computed by
cross-correlating ambient noise. The red triangle denotes the lateral position
of the virtual source (i.e. the master-trace position for the cross-correlation)
and the green dashed line denotes the position of a scatterer.

nated by spurious events which are the result of cross-correlating
irrelevant events. Such spurious events are weakened with longer
recording time. Nevertheless, some key backscattering events can
be identified and are highlighted in the yellow dashed lines and
labelled A, B, C in Fig. B1.

The backscattered events are the result of cross-correlating
backscattered waves with transmitted events in the ambient noise.
The cross-correlation and stacking process of events in the ambient-
noise records eliminates common ray paths (Schuster et al. 2004;
Schuster 2010), that is∑

n

eiωτnr e−iωτns ≈ eiωτsr , (B1)

for ambient-noise sources located at n, where τ ns denotes the trav-
eltime from the noise source n to the virtual source s, and similarly
τ nr is the traveltime from the noise source to the virtual receiver r.
In this simplified analysis of kinematics, we harmlessly ignore the
amplitudes and dispersion and highlight the phase of the correlated

Figure B2. Ambient-noise cross-correlation scenarios that give rise to the
backscattering events in Fig. B1. The start symbol � denotes convolution
between the conjugated phases, shown as dashed lines from the noise source
to the virtual source and phases from noise source to the virtual receiver
shown as a solid line.
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arrival. Using this simple notion of canceling the phase of com-
mon ray paths by cross-correlation, we can analyse the backscatter-
ing events in the empirical Green’s functions. Fig. B2 depicts the
three scenarios for redatuming passive events into the A-, B- and
C-labelled backscattered events in the empirical Green’s function
in Fig. B1.

The A-labelled event in Fig. B1 is characterized by acausal scat-
tering excited by an acausal incident wave. As demonstrated by the
corresponding plot labelled A in Fig. B2, this event is the result of
cross-correlating backscattered events from a scatterer at the virtual
source position with the direct arrival at the virtual receiver posi-
tion. The common ray path is eliminated and the results indicate
an event that travels from the virtual source to the scatterer to the
virtual receiver, that is∑

n

eiωτnr e−iωτnXs ≈ e−iωτs Xr , (B2)

where X is the position of the scatterer and the τ subscripts denote
the points along the ray path. However, this event has a negative
phase (dashed lines Fig. B2 indicate negative phase), and therefore
it appears at a negative time lag in the empirical Green’s function
in Fig. B1. Similarly, the C-labelled event is the result of cross-
correlating the direct arrival associated with the virtual source po-
sition and the backscattered events at the virtual receiver position.
Therefore, the phase delay associated with the common ray path is

eliminated, giving rise to a causal scattering event due to a causal
incident wave that appears in the positive time lag in the empirical
Green’s function (eiωτs Xr ).

The remaining B-labelled event is related to cases where the
scatterer is between the virtual source and receiver positions. In
such cases, backscattered events are cross-correlated with direct
events, or vice versa, giving rise to a mixed phase (eiωτXr −iωτs X ),
where the event could appear at either positive or negative time
lags of the empirical Green’s function. In all cases, however,
the negative phase associated with events traveling from the vir-
tual source to the scatterer while the positive phase is associ-
ated with events traveling from the scatterer to the virtual re-
ceiver shown in Fig. B2(B). Therefore, the B-labelled backscat-
tered event is causal backscattering due to acausal incident waves.
If cross-correlation is time symmetric as defined in eq. (5), a
mirror of the B-labelled event will be in the empirical Green’s
function, which is acausal backscattering due to causal incident
waves.

The B-labelled backscattering event can be considered non-
physical and contradictory to eq. (6). Such non-physical scatter-
ing, however, is redundant information and often overlaps with
early arrivals like body waves and strong cross-correlation arte-
facts. Therefore, we mute such events between the causal- and
acausal-transmitted events in the ambient-noise cross-correlation
before migration.
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