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S U M M A R Y
We present a new method of surface wave tomography based on applying the eikonal equation
to observed phase traveltime surfaces computed from seismic ambient noise. The source–
receiver reciprocity in the ambient noise method implies that each station can be considered to
be an effective source and the phase traveltime between that source and all other stations is used
to track the phase front and construct the phase traveltime surface. Assuming that the amplitude
of the waveform varies smoothly, the eikonal equation states that the gradient of the phase
traveltime surface can be used to estimate both the local phase speed and the direction of wave
propagation. For each location, we statistically summarize the distribution of azimuthally
dependent phase speed measurements based on the phase traveltime surfaces centred on
different effective source locations to estimate both the isotropic and azimuthally anisotropic
phase speeds and their uncertainties. Examples are presented for the 12 and 24 s Rayleigh
waves for the EarthScope/USArray Transportable Array stations in the western USA. We
show that (1) the major resulting tomographic features are consistent with traditional inversion
methods, (2) reliable uncertainties can be estimated for both the isotropic and anisotropic
phase speeds, (3) ‘resolution’ can be approximated by the coherence length of the phase
speed measurements and is about equal to the station spacing, (4) no explicit regularization is
required in the inversion process and (5) azimuthally dependent phase speed anisotropy can
be observed directly without assuming its functional form.

Key words: Tomography; Surface waves and free oscillations; Seismic anisotropy; Wave
propagation; North America.

1 I N T RO D U C T I O N

The seismic surface wave tomography inverse problem is nor-
mally approached in one of two ways that can be thought of as
either ‘single-station’ or ‘array-based’ methods. Both methods have
proven effective at revealing the spatial variability of surface wave
speeds from global to regional scales.

The first (single-station) approach to surface wave tomography is
based on traveltime measurements between a set of seismic sources
(typically earthquakes) and a set of receivers (one receiver at a time).
The traveltimes are then interpreted in terms of wave speeds in the
medium of propagation using ray theory with straight or potentially
bent rays (e.g. Trampert & Woodhouse 1996; Ekstrom et al. 1997;
Ritzwoller & Levshin 1998; Yoshizawa & Kennett 2002) or finite
frequency kernels (e.g. Dahlen et al. 2000; Ritzwoller et al. 2002;
Levshin et al. 2005). This method results in a set of frequency-
dependent dispersion maps of either Rayleigh or Love wave group
or phase speed. This approach has also been applied to ambient
noise data (e.g. Sabra et al. 2005; Shapiro et al. 2005; Yao et al.
2006; Moschetti et al. 2007; Lin et al. 2007; Yang et al. 2007;

Bensen et al. 2008), which provides wave traveltimes between pairs
of receivers. In this case, one station can be considered to be an
‘effective’ source, but it is equivalent to the earthquake tomography
problem in which the sources excite the wavefield. A variant of this
method involves waveform fitting that in some cases bypasses the
dispersion maps to construct the 3-D variation of shear wave speed
directly in earth’s interior (e.g. Woodhouse & Dziewonski 1984;
Nolet 1990; van der Lee & Fredriksen 2005).

The second approach to surface wave tomography deals with
stations as components of an array and interprets the phase differ-
ence observed between waves recorded across the array in terms
of the dispersion characteristics of the medium. In doing so, this
method either applies geometrical constraints on the stations, typi-
cally that they lie nearly along a great circle with the earthquake (e.g.
Brisbourne & Stuart 1998; Prindle & Tanimoto 2006), or inverts for
the characteristics of the incoming wave front along with the surface
wave dispersion characteristics of the medium lying within the array
(e.g. Alsina et al. 1993; Friederich 1998; Yang & Forsyth 2006).

In both approaches, the surface wave dispersion maps result from
a regularized inverse problem that is typically solved by matrix
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Figure 1. The 499 stations used in this study are identified by black triangles. Waveforms are taken continuously between October 2004 and November 2007.
Most stations are from the EarthScope/USArray Transportable Array (TA), but a few exceptions exist, such as NARS Array stations in Mexico. The four red
symbols identify locations used later in the paper.

inversion. Regularization in most cases is ad hoc, and includes
spatial smoothing as well as matrix damping. As in many geo-
physical inverse problems, a trade-off between the amplitude of the
heterogeneity and the resolution emerges that affects confidence
in the smaller structural scales when high resolution is desired.
This trade-off is most severe for azimuthal anisotropy, as has been
well documented by previous studies (e.g. Laske & Master 1998;
Levshin et al. 2001; Trampert & Woodhouse 2003; Smith et al.
2004; Deschamps et al. 2008), in which the amplitude of anisotropy
is particularly poorly determined. These problems are exacerbated
by the fact that uncertainty information that emerges for the maps
tends to be unreliable. Theoretical approximations made in the in-
version, such as the assumption of straight (great-circle) rays or
approximate sensitivity kernels, also affect the quality of the re-
sulting maps. This particularly calls into question the robustness of
information about azimuthal anisotropy because the magnitude of
the traveltime effects of azimuthal anisotropy and ray bending, for
example, is similar.

The purpose of this paper is to present a new method of surface
wave tomography that complements the traditional methods. The
method is based on tracking surface wave fronts across an array
of seismometers (Pollitz 2008) and should, therefore, be seen to
lie within the tradition of array-based methods, although as will be
seen in the discussion below the method degenerates to phase mea-
surements obtained at single stations. The method is applicable, in
principle, to surface waves generated both by earthquakes and ambi-
ent noise, but applications in this paper will concentrate on ambient
noise recordings across the transportable array (TA) component of
EarthScope/USArray (Fig. 1). Because it is an array-based method,
however, an array is needed. The TA provides an ideal setting, but
large PASSCAL experiments are suitable for the method and the
emergence of large-scale arrays in Europe and China that mimic
the station spacing of the TA also provide nearly optimal targets.

The method described in this paper is performed in three steps.
We discuss the method here in the context of ambient noise tomog-
raphy such that each station can be considered to be an effective
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source as well as a receiver. The relevance of the method to earth-
quake tomography is discussed later in the paper. In the first step, a
phase delay (or traveltime) surface is computed across the array cen-
tred on each station. We refer to this step as wave front or phase front
tracking. In the second step, the gradient of each traveltime surface
is computed at each spatial node. Invoking the eikonal equation,
the magnitude of the gradient approximates local phase slowness
and the direction of the gradient is the direction of propagation of
the geometrical ray. Steps 1 and 2 are performed with every sta-
tion in the array as the effective source for the traveltime surface.
Finally, in step 3, for each spatial node the local phase speeds and
wave path directions are compiled and averaged from the traveltime
surfaces centred on each individual station in the array. Because
step 2 invokes the Eikonal equation, we refer to the method as
‘Eikonal tomography’.

Eikonal tomography complements traditional surface wave to-
mography in several ways. First, there is no explicit regularization
and, hence, the method is largely free from ad hoc choices. The
method as we implement it does, however, involve smoothing in
tracking the phase fronts. Second, the method accounts for bent
rays, but ray tracing is not needed. The gradient of the phase front
provides information about the local direction of travel of the wave.
The use of bent rays in traditional tomography would necessitate
iteration with ray tracing performed on each iteration. Third, the
method naturally generates error estimates for the resulting phase
speed maps. In our opinion, this is more useful than relying on
global misfit obtained by traditional inversion methods. Fourth, in
the context of estimating azimuthal anisotropy, eikonal tomography
directly measures azimuth-dependent phase velocities at each node.
Unlike the traditional tomographic method, no ad hoc assumption
about the functional dependence of the phase velocity with az-
imuth is made. Finally, in the construction of phase speed maps,
the ray tracing and matrix construction and inversion of the tradi-
tional methods have been replaced by surface fitting, computation of
gradients and averaging. The method, therefore, is computationally
very fast and parallelizes trivially.

Although we have applied Eikonal tomography successfully from
8 s to 40 s period across the western USA, we present results here
only for the 12 s and 24 s Rayleigh waves. In principle, the same
method can be applied to Love waves as well. The results shown in
this study are presented to illustrate the method. Interpretation of
the results will be the subject of future contributions.

2 T H E O R E T I C A L P R E L I M I NA R I E S

The traditional approach to seismic tomography begins with a state-
ment of the forward problem that links unknown earth functionals
(such as seismic wave speeds, surface wave phase or group speeds,
etc.) with observations. In surface wave tomography, when mode
coupling and the directionality of scattering are neglected, this in-
volves the computation of traveltimes from the 2-D distribution of
(frequency dependent) surface wave phase speeds, c(r), that can be
written in integral form as

t(r s, r r) =
∫

A(r, rs, r r)
dxm

c(r)
(1)

where rs and rr are the source and receiver locations, r is an arbi-
trary point in the medium and m = 1 or 2 denotes line and area
integrals, respectively. For ‘ray theories’, m = 1 and the integral
kernel, A(r,rs, rr), vanishes except along the path, which is typi-
cally either a great-circle (straight ray) or a path determined by the
spatial distribution of phase speed (geometrical ray theory), which

is known only approximately. Ray theories are fully accurate at in-
finite frequency and approximate at any finite frequency. For m =
2, the integral is over area, and the integral kernel represents the fi-
nite frequency spatial extent of structural sensitivity. The sensitivity
kernel may be ad hoc (e.g. Gaussian beam) or determined from a
scattering theory (e.g. Born/Rytov) given a particular 1-D or higher
dimensional input model. Spatially extended kernels are referred
to as finite frequency kernels, to contrast them with ray theories.
Much of recent theoretical work in surface wave seismology has
been devoted to developing increasingly sophisticated, and presum-
ably accurate, representations of the integral kernel in eq. (1) (e.g.
Zhou et al. 2004; Tromp et al. 2005), although debate continues
about whether approximate finite frequency kernels are preferable
practically to ray theories based on bent rays with ad hoc cross-
sections (e.g. Yoshizawa & Kennett 2002; van der Hilst & de Hoop
2005; Montelli et al. 2006; Trampert & Spetzler 2006).

Eq. (1) defines traveltime as a ‘global’ constraint on structure;
that is, it is a variable that depends on the unknown structure over an
extended region of model space and is defined to be contrasted with
‘local’ constraints. The traditional primacy of the forward problem
in defining the inverse problem necessitates that the inverse problem
is similarly global in character. Traveltime observations constrain
phase speeds non-locally, that is over an extended region of model
space.

In contrast, eikonal tomography places the inverse problem in
the primary role once the phase traveltime surfaces, τ (r i, r), for
positions r relative to an effective source located at r i are known.
The Eikonal equation (e.g. Wielandt 1993; Shearer 1999) is based
on the following:

1

ci (r)2
= |∇τ (r i , r)|2 − ∇2 Ai (r)

Ai (r)ω2
, (2)

which is derived directly from the Helmholtz equation. When the
second term on the right-hand side is small, then

k̂i

ci (r)
∼= ∇τ (r i , r). (3)

Here, ci is the phase speed for traveltime surface i at position
r, ω is the frequency and A is the amplitude of an elastic wave at
position r. The gradient is computed relative to the field vector r
and k̂i is the unit wave number vector for the traveltime surface
i at position r. The eikonal equation, eq. (3), derives by ignoring
the second term on the right-hand side in eq. (2). In this case, the
magnitude of the gradient of the phase traveltime is simply related
to the ‘local’ phase slowness at r and the direction of the gradient
provides the ‘local’ direction of propagation of the wave. Thus, the
eikonal equation places local constraints on the surface wave speed.

Dropping the second term on the right-hand side of eq. (2) is
justified either at high frequencies or if the spatial variation of the
amplitude field is small compared with the gradient of the travel-
time surface. The latter is the less restrictive constraint and will
hold if lateral phase speed variations are sufficiently smooth to
produce a relatively smooth amplitude field. Moreover, when re-
peated measurements are performed with phase traveltime surfaces
from different effective sources, the errors caused by dropping the
amplitude term are likely to interfere destructively, but will con-
tribute to the estimated uncertainty especially when the wavelength
is shorter than the length scale of the velocity structure (Bodin
& Maupin 2008). We take this interpretation as the basis for the
use of the Eikonal equation and use synthetic tests, presented in
Section 5.1, to confirm that the effect of dropping the amplitude
term is not a significant source of error in this study. In addition, in
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ambient noise tomography, absolute amplitude information is typ-
ically lost due to time- and frequency-domain normalization prior
to cross-correlation (Bensen et al. 2007). In this circumstance, the
computation of the second term on the right-hand side of eq. (2) is
impossible.

The question may arise whether eikonal tomography should be
considered to be a geometrical ray theory or a finite frequency the-
ory. The question is motivated by considering globally constrained
inverse problems and is somewhat inapt for a locally constrained
inversion. We believe, however, that the answer is that eikonal to-
mography has elements of both. Certainly, the eikonal equation
presents information about the local direction of propagation of a
wave and is, therefore, not a straight-ray method but is ‘geometrical’
in character. However, the phase traveltime surfaces that are taken
as data in the inversion possess spatially extended sensitivity (finite
frequency information), and Lin and Ritzwoller (‘On the determi-
nation of empirical surface wave sensitivity kernels’, manuscript
in preparation, 2008) show how approximate empirical finite fre-
quency kernels can be determined from them. Thus, ignoring the
second term on the right-hand side of eq. (2) does not equate with
rejecting finite frequency information. However, the resulting in-
terpretation of the local gradient of the phase traveltime surface in
terms of a wave propagating with a single well-defined direction, k̂,
is consistent with a single forward scattering approximation. If there
were more than one scatterer, that is, multipathing, then the equa-
tion could not be interpreted as defining an unambiguous direction
of travel at each point. Thus, we do not see Eikonal tomography as
a ray method, but summarize it as an approximate finite frequency,
geometrical (i.e. bent ray), single forward scattering method.

3 P H A S E F RO N T T R A C K I N G

Eikonal tomography for ambient noise begins by constructing cross-
correlations between each station pair. The ambient noise cross-

Figure 2. (a) Great circle paths linking station R06C (southeast of Lake Tahoe, identified by the white star) with all TA stations where cross-correlations were
obtained. (b) Symmetric component record section for 15–30 s period band-passed vertical–vertical cross-correlations with station R06C in common. More
than 450 cross-correlations are shown. Clear move-out near 3 km s−1 is observed.

correlation method to estimate the Rayleigh and Love wave empir-
ical Green’s functions (EGFs) is described by Bensen et al. (2007)
and Lin et al. (2008). We use the method to produce Rayleigh
wave EGFs and phase velocity curves between 8 and 40 s period
and have processed all available vertical component records from
the USArray/TA observed between October 2004 and November
2007. These stations are shown in Fig. 1. The symmetric component
cross-correlation (average of positive and negative lag waveforms)
between each station pair is used to construct the EGFs.

Each phase traveltime surface is defined relative to a given station
location, r i, which is coincident with the effective source location
of the wavefield. If r denotes an arbitrary location, then the travel-
time surfaces relative to effective sources i is given by τ (ri, r) for
1 ≤ i ≤ n, where n is the number of stations. The construction of
the phase traveltime surfaces across the array starts by mapping the
phase traveltimes in space centred on the effective source locations.
Fig. 2(a) presents example great-circle ray paths for an effective
source at TA station R06C and Fig. 2(b) shows the EGFs to all other
TA stations plotted as a record section band-pass filtered from 15 to
30 s period. The coherence of the information contained in this
record section can be seen in wavefield snapshots such as those in
Fig. 3, in which the amplitude of the normalized envelope function
for each EGF is colour coded. Plots such as these illustrate that
the entire Rayleigh wavefield can be seen to propagate away from
the effective source. The plot also illustrates how the amplitude
of the EGF varies with azimuth, with the largest amplitudes point-
ing directly towards or away from the coast relative to the central
station. Nevertheless, reliable phase times are measurable at nearly
all azimuths, which is essential to map the phase traveltime surface.

Phase traveltimes to all stations from an effective source are
measured using the method of Lin et al. (2008) on each EGF be-
tween 8 and 40 s period. For a fixed frequency, the measured phase
traveltime is assigned to each station whose EGF has a signal-to-
noise ratio (SNR) exceeding 15, where SNR is defined by Bensen
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Figure 3. Snapshots of the normalized amplitude of the ambient noise cross-correlation wavefield with TA station R06C (star) in common at the centre. Each
of the 15–30 s band-passed cross-correlations is first normalized by the rms of the trailing noise (Lin et al. 2008) and fit with an envelope function in the time
domain. The resulting normalized envelope functions amplitudes are then interpolated spatially. Two instants in time are shown, illustrating clear move-out
and the unequal azimuthal distribution of amplitude.

et al. (2007). To construct a phase traveltime surface, these phase
traveltimes must be interpolated onto a finer, regular grid. To do
this, we fit a minimum curvature surface onto a 0.2◦ × 0.2◦ grid
across the western USA. The result for central station R06A for the
24 s Rayleigh wave is shown in Fig. 4(a). Variations in the method
of interpolation have minimal effect on the resulting surface, aver-
aging less than 0.2 s except near the central station and on the map’s
periphery. An example is shown in Fig. 4(b) in which a second inter-
polation scheme invokes an extra tension term in the surface fitting
(Smith & Wessel 1990). The difference near the centre is expected
because the real traveltime surface will have singular curvature at
the effective source. Accurate modelling of the phase time surface
near the source, therefore, would require a different method of inter-
polation than that used here. In addition, traveltime measurements
obtained between stations separated by less than 1–2 wavelengths
are less reliable than those from longer paths. Thus, from each trav-
eltime surface we remove the region within two wavelengths of the
central station and also any region in which the phase traveltime
difference between the two interpolation methods is greater than
1.0 s. Finally, as an added quality control measure, for each loca-
tion we include measurements from this location only when at least
three of the four quadrants of the East–West and North–South axes
are occupied by at least one station within 150 km. The resulting
truncated phase traveltime map centred on station R06A for the
24 s Rayleigh wave is shown in Fig. 5(a). Several other examples
with either a different central station or a different period are also
shown in Fig. 5. This method of phase front tracking is not perfect,
as several irregularities in the contours of constant traveltime in

Fig. 5(c) testify. Statistical averaging is needed to reduce the effects
of these irregularities, as discussed later in Section 4.

The phase front tracking process introduced here is essentially the
only place in the eikonal tomography method where the inverter has
the freedom to make ad hoc choices. The choice of using a minimum
curvature surface fitting method as our interpolation scheme min-
imizes the variation of the gradient and hence gives the smoothest
resulting velocity variation. With this interpolation scheme, how-
ever, the phase traveltime surface within an area bounded by the
three to four closest stations will always have similar gradients.
This spatial coherence of the variation of the gradient, as we will
discuss later on in Sections 4.2 and 5.1, limits our ability to resolve
velocity anomalies much smaller than the station spacing. If higher
resolution is desired, a more sophisticated interpolation scheme will
be required.

4 E I KO NA L T O M O G R A P H Y

For the eikonal equation, eq. (3), the magnitude of the gradient of
the phase traveltime is simply related to the local phase slowness
at position r and the direction of the gradient provides a measure
of the direction of propagation of the wave. Taking the gradient
on the phase traveltime surface gives the local phase speed as a
function of the direction of propagation of the wave. Hence, there
is no need for a tomographic inversion. If the eikonal equation is
looked at as an inverse problem, the gradient is seen as the inverse
operator that maps traveltime observations into model values (phase
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6 F.-C. Lin, M. H. Ritzwoller and R. Snieder

Figure 4. (a) The phase traveltime surface for the 24 s Rayleigh wave centred on TA station R06C (star). Contours are separated by 24 s intervals. (b) The
difference in phase speed traveltime using two different phase front interpolation schemes. The 48 s contour is identified with a grey circle centred on station
R06C.

slownesses) and is applied without the need first to construct the
forward operator.

4.1 Isotropic wave speeds

Fig. 6 shows the result of applying the eikonal equation to the phase
traveltime surface for the 24 s Rayleigh wave shown in Fig. 5(a)
centred on station R06A. For each individual central station i, the
resulting phase speed map is noisy (Fig. 6a) due to imperfections
in the phase traveltime map. This is caused by errors in the input
phase traveltimes that, in a similar measurement, Lin et al. (2008)
estimated to be about 1 s, on average. This is a significant error
when spacing between stations is small. However, there are n sta-
tions, which in the present study for the TA is about 490. This
allows the statistics of the phase speed estimates to be determined.
For example, Fig. 7(a) shows the 455 Rayleigh wave phase speed
measurements at a period of 24 s as a function of the propagation
direction for the point in Nevada identified by the star in Fig. 1.
To determine the isotropic phase speed and its uncertainty for each
point, we first calculate the mean slowness, s0, and the standard de-
viation of the mean slowness, σs0 , from the distribution of slowness
measurements, si:

s0 = 1

n

n∑
i=1

si , (4)

σ 2
s0

= 1

n(n − 1)

n∑
i=1

(si − s0)2, (5)

where n is the number of effective sources. This intermediate step
properly accounts for error propagation. The isotropic phase speed,

c0, and its uncertainty, σc0 , are then determined by

c0 = 1

s0
(6)

σc0 = 1

s2
0

σs0 . (7)

The local phase speed uncertainty, σc0 , is mapped for the 24 s
Rayleigh wave in Fig. 8(a), where only the region in which the
number of measurements is greater than half the total number of
the effective sources is shown. The average uncertainty across the
map is about 7 m s−1 or about 0.2 per cent of the phase speed.
Note that this uncertainty estimate only accounts random errors
within traveltime measurements. Systematic errors introduced by
the tomography method itself will be discussed in Section 5.1.

Example phase speed measurements and the uncertainty map for
the 12 s period Rayleigh wave are displayed in Figs 7(b) and 8(b),
respectively. Uncertainty at this period is largest along the western
and northern edges of the region that is most likely due to small-
scale wave front distortion resulting from large velocity contrasts.
The average uncertainty is about 8 m s−1, which is slightly larger
than that at 24 s. This is not unexpected because the validity of the
eikonal equation relies on smoothly varying velocity structures and
this is a less robust assumption for surface waves at shorter periods.

The isotropic phase speed maps at periods of 24 s and 12 s are
plotted in Figs 9(a) and 10(a), respectively. For comparison, the
phase speed maps determined from the phase speed measurements
using a traditional tomographic method based on the straight-ray
approximation (Barmin et al. 2001) are shown in Figs 9(b) and
10(b). Differences between the methods are illustrated in Figs 9(c)
and 10(c).
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Eikonal tomography 7

Figure 5. Rayleigh wave phase speed traveltime surfaces at periods of (a, b) 24 s and (c, d) 12 s centred on two ‘effective sources’: stations R06C (eastern
California) and F10A (northeastern Oregon). Traveltime level lines are presented in increments of the wave period. The maps are truncated within two
wavelengths of the central station and where the three- out of four-quadrant selection criterion is not satisfied. These two criteria usually take effect only near
the periphery of the station coverage.

Agreement between the isotropic maps produced with eikonal
tomography and the traditional straight-ray tomography is gener-
ally favourable, but there are regions of significant disagreement.
At 24 s period, the differences are greatest near the western bound-
ary of the map where eikonal tomography seems to recover crisper,

more highly resolved features that correlate better with known ge-
ological structures. For the 24 s Rayleigh wave, the phase velocity
contrast between the fast and slow anomalies is generally too gen-
tle to make ray paths deviate significantly from great circle paths.
This is also indicated in Fig. 6(b) where the average deviation of
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8 F.-C. Lin, M. H. Ritzwoller and R. Snieder

Figure 6. (a) The phase speed inferred from the eikonal equation for the 24 s Rayleigh wave traveltime surface shown in Fig. 5a centred on station R06A.
(b) The propagation direction determined from the gradient of the phase traveltime surface at each point is shown with arrows. The difference between the
observed propagation direction and the straight-ray prediction (radially away from stations R06A) is shown as the background colour.

propagation direction from the great circle path is only about 3◦. It is
not likely, therefore, that the differences observed between eikonal
and traditional tomography at this period are purely because eikonal
tomography accounts for bent rays. Differences more likely result
from the regularization applied in the straight-ray inversion, which
tends to distort the velocity anomalies near the edges of the map. At
12 s period, however, velocity contrasts are more significant and the
off-great-circle effect is more pronounced. The effect of modelling
bent rays in eikonal tomography can be seen in at least two features
of the 12 s map. First, a lineated anomaly associated with the Cas-
cade Range is better observed with eikonal tomography. Second,
eikonal tomography also produces wave speeds that are systemat-
ically slower than the straight-ray inversion (Fig. 10c) in most of
the region. The bent rays travel faster than the straight rays (Roth
et al. 1993), and to fit the data equally well with bent rays requires
depression of wave speeds, on average. This can be seen clearly in
the histograms of differences presented in Fig. 11, where the mean
difference between the two 12 s maps is about 10 m s−1 (about
0.3 per cent of the phase speed), whereas the 24 s maps differ, on
average, only by ∼5 m s−1.

4.2 Coherence length of the measurements

Traditional estimates of resolution typically are based on applying
the inverse operator (relating observations to model variables) to
the forward operator (relating model variables to observations) in
an inverse problem. With eikonal tomography, neither an inverse
nor a forward operator is constructed explicitly, so resolution is not
straightforward to determine. Checkerboard tests are possible, but
numerical simulations would need to accurately calculate the phase
traveltime between each station pair.

We take a different approach and attempt to estimate the res-
olution based on the coherence length of the measurements. To
do so, we first estimate the statistical correlation, ρ, of slowness
measurements between locations j and k by

ρ jk =

(
n∑

i=1
(s ji − s j0)(ski − sk0)

)2

n∑
i=1

(s ji − s j0)2
n∑

i=1
(ski − sk0)2

, (8)

where i is the index of the effective sources and sj 0 and sk 0 are
the mean slowness at locations j and k, respectively. The statistical
correlation, ρ, varies between 0 and 1 and represents the degree
of coherence or independence between the measurements made at
the two locations. Using the point in central Nevada (Fig. 1) as an
example again, the statistical correlation between the phase speed
observations at that point and the neighbouring points is summa-
rized as a correlation surface shown in Fig. 12(a). We follow Barmin
et al. (2001) and estimate the coherence length of the measurements
by fitting the correlation surface with a cone, where the base radius
of the cone is taken as the coherence length estimate R.

Although this is different from the traditional definition of reso-
lution, it does provide information about the length scale of features
that can be resolved in a region. The coherence length estimated in
this way for the 24 s Rayleigh wave is shown in Fig. 12(b). In most
regions, coherence length is somewhat smaller than the average
inter-station spacing of 70 km across the western USA. Although
this result is comparable to the resolution estimated by the straight-
ray tomography (Lin et al. 2008), there are fundamental differences
between the two. When the observed phase traveltimes are affected
by a velocity structure much smaller than the inter-station distance,
without a more sophisticated interpolation scheme, the minimum
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Figure 7. (a) Example of the azimuthal distribution of the Rayleigh wave phase velocity measurements at 24 s period for the point in central Nevada indicated
by the star in Fig. 1. (b) Same as (a), but for the 12 s Rayleigh wave phase speed at the same location. The mean and standard deviation of the mean are
identified at upper left in each panel.

curvature fitting method we use will smear the traveltime anomalies
to an area confined by the few closest nearby stations. This smear-
ing effect is further evidenced in our synthetic tests in Section 5.1.
Thus, the station spacing constrains the coherence length as well
as the smallest scale of structure that can be confidently resolved.
Increasing the number of effective sources will tend to reduce the
estimated uncertainty, but most likely will have a little impact on
the coherence length.

4.3 Azimuthal anisotropy

Eikonal tomography also provides an estimate of azimuthal
anisotropy. In traditional surface wave inversions, it is commonly
assumed that the Rayleigh wave phase speed exhibits the follow-
ing functional dependence on azimuth, which is derived based on
theoretical studies of weakly anisotropic media (Smith & Dahlen
1973):
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Figure 8. (a) The 24 s period isotropic Rayleigh wave phase speed uncertainty map, determined from the distribution of phase speed measurements based on
applying the eikonal equation to each of the phase traveltime maps at each point. (b) The 12 s isotropic Rayleigh wave phase speed uncertainty map.

Figure 9. (a) The 24 s Rayleigh wave isotropic phase speed map derived from eikonal tomography. The isotropic phase speed at each point is calculated from
the distribution of local phase speeds determined from each of the phase traveltime maps. (b) Same as (a), but the straight-ray inversion of Barmin et al.
(2001) is used. The black line is the 100 km resolution contour. (c) The difference between eikonal and straight-ray tomography is shown where positive values
indicate that the eikonal tomography gives a higher local phase speed.

c(ψ) =c0+A cos [2(ψ − ϕ)] + B cos[4(ψ − α)], (9)

where ψ is the azimuthal angle measured positive clockwise from
north, A and B are the amplitude of anisotropy and ϕ and α define the
orientation of the anisotropic fast axes for the 2ψ and 4ψ compo-

nents of anisotropy. Although the estimated 2ψ fast directions may
be robust in the traditional inversion, the amplitude of the anisotropy
almost inevitably depends on the regularization parameters chosen
(e.g. Smith et al. 2004). In eikonal tomography, the velocity as
a function of azimuth of the wave is measured directly and it is
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Figure 10. The same as Fig. 9, but for the 12 s Rayleigh wave. The result of eikonal tomography is slightly slower (yellow-red shades), on average, than the
straight-ray tomography because it models off-great-circle propagation.
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Figure 11. Normalized histograms of the Rayleigh wave phase speed difference across the studied region between eikonal tomography and straight-ray
tomography at 12 and 24 s period, respectively. The mean differences result because eikonal tomography models off-great-circle propagation, which is more
significant at 12 s than 24 s period.

then determined if the relationship reflects a simple function of
azimuth.

As with the measurement of isotropic phase velocity, the esti-
mation of anisotropy begins with the set of phase speeds estimated
at a single spatial location from the set of phase speed traveltime
maps segregated by azimuth, as in the example shown in Fig. 7(a)
for the 24 s Rayleigh wave for a point in central Nevada. Due to
phase traveltime errors in the maps, the measured phase speeds
are significantly scattered and any azimuthally dependent trend is
obscured. Scatter is reduced substantially by stacking and binning
in two stages. First, we combine the azimuthally dependent phase
speed measurements obtained at the target point with measurements
at the eight surrounding spatial points (3×3 grid with the target point
at the centre). We use a 0.6◦ grid separation approximately equal to
the coherence length estimate described in the last section, which
effectively guarantees that measurements are statistically indepen-
dent from one another. To reduce mapping the lateral variation of

isotropic phase speed into azimuthal anisotropy, we remove the
isotropic speed difference between each point and the centre point
of the 3×3 grid for all of the measurements. This stacking process
increases the number of measurements for the centre point, but does
so at the expense of reducing spatial resolution. Second, we com-
bine all of the azimuthally dependent phase speed measurements in
each 20◦ azimuthal bin into a mean speed and its standard deviation
of the mean for that bin. Here, again, the mean slowness and the
standard deviation of the mean slowness are first calculated and
then converted to the mean speed and its uncertainty.

Fig. 13 shows examples for four different geographical locations
of the stacked azimuthally dependent phase speed measurements
with their uncertainties for the 24 s Rayleigh wave. For the examples
in Utah and Nevada, Figs 13(a) and (b), where good azimuthal data
coverage exists, a clear 2ψ variation is observed for the entire 360◦

of azimuth. On the other hand, Figs 13(c) and (d) show two examples
near the western boundary of the map where azimuthal coverage
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Figure 12. (a) An example of the spatial coherence of the measurements for the 24 s Rayleigh wave at the point in central Nevada indicated by the star in
Fig. 1. (b) The radius (R) of the cone fit to the coherence surface at each location, which bears a similarity to resolution.
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Figure 13. Examples of the azimuthal dependence of phase velocity measurements for the 24 s Rayleigh wave at four points in the western USA where large
amplitude 2ψ azimuthal variation can be observed: (a) Utah, (b) Nevada, (c) northern California and (d) central California. The locations are indicated by the
circle, star, square, and diamond in Fig. 1, respectively. Error bars are estimated based on the distribution of phase velocity measurements in each 20◦ azimuthal
bin for the given location and its eight nearest neighbouring grid points. For each case, the solid line is the best fit of the 2ψ azimuthal variation.

is limited. Nevertheless, the 2ψ velocity signal is still observed
robustly because measurements cover at least 180◦. Based on these
observations, for each period and location, we adopt the assumption
of a weakly anisotropic medium, fit the results with the 2ψ part of the
cosinusoid and use it to estimate the amplitude and fast direction of
anisotropy with associated uncertainties. Here, robust statistics are
used. Measurements that cannot be fit within 2 standard deviations

are removed to minimize the effect of significant outliers, but the
difference between the robust statistics and non-robust statistics
is small overall. Adding the 4ψ term does not improve the data
fit appreciably, which indicates that the 4ψ variation of Rayleigh
waves is weaker and our data set is not sufficient to constrain it. The
observed 2ψ azimuthal anisotropy exhibits different amplitudes and
fast directions in different locations. This minimizes concern about
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Figure 14. (a) The 24 s period Rayleigh wave azimuthal anisotropy fast axis directions and peak-to-peak amplitudes, 2A/c0, which are proportional to the
length of the bars. (b) Peak-to-peak amplitude of anisotropy presented in per cent.

Figure 15. (a) Variance reduction of the 24 s Rayleigh wave 2ψ azimuthal anisotropy relative to the isotropic speed at each point. (b) The uncertainty in the
angle of the fast direction, ϕ. (c) The uncertainty of the amplitude of anisotropy.

systematic errors in the input phase traveltimes due to azimuthally
inhomogeneous ambient noise sources that could result in a uniform
fast direction for the entire region.

Azimuthal anisotropy for the 24 s Rayleigh wave is summa-
rized in Fig. 14a. The peak-to-peak amplitude of anisotropy is
presented in Fig. 14(b). Fig. 15(a) presents the variance reduction
after introducing the 2ψ anisotropy term. Significant improvements

(>80 per cent) are observed over extended regions, which not only
indicates the robustness of the measurements but also suggests that
azimuthal anisotropy is a general feature of Rayleigh waves in the
western USA. We note that the regions with poor variance reduc-
tion (<40 per cent) are generally accompanied by weak anisotropy
(<0.5 per cent), which may be a real feature or may be due to a spa-
tially rapid and unresolvable change in fast direction. The estimated
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Figure 16. (a)–(b) Same as Figs 14(a) and (b), but here the 24 s Rayleigh wave azimuthal anisotropy result is determined with the traditional straight-ray
method of Barmin et al. (2001) with a regularization chosen to approximate the amplitudes in Fig. 14b. The black line is the 100 km resolution contour. (c) The
normalized histogram of the difference in fast directions between the eikonal tomography result (Fig. 14a) and the straight-ray tomography result. (d)–(f) Same
as (a)–(c) but with stronger smoothing regularization. Patterns of anisotropy remain largely unchanged, but amplitudes diminish with greater the damping.

uncertainty of the observed azimuthal anisotropy fast directions and
amplitudes are summarized in Figs 15(b) and (c), respectively. As in
traditional anisotropy tomography, the fast directions are generally
robust features. We estimate the uncertainties of the fast directions to
be less than 6◦ in most of regions. Again, regions with larger uncer-
tainties in the fast direction generally result from weak anisotropy.
Uncertainties in the amplitude of anisotropy are generally smaller
(<3 m s−1 or 0.1 per cent of the isotropic phase speed) in regions
with nearly complete azimuthal data coverage than near the periph-
ery of the studied region where only part of entire azimuthal range
has measurements.

For comparison, the 2ψ 24 s Rayleigh wave phase speed
anisotropy determined by traditional straight-ray inversion (e.g.
Barmin et al. 2001) with two different smoothing strengths is
summarized in Figs 16(a) and (d) and with amplitudes plotted in
Figs 16(b) and (e). The difference in fast directions compared to
eikonal tomography is also summarized as histograms in Figs 16(c)
and (f), where only regions with anisotropy amplitude larger than
0.5 per cent in the eikonal tomography are included. Overall, the ob-

served anisotropy fast direction patterns are consistent between the
two traditional inversions and the eikonal tomography inversion.
This is not unexpected because the off-great-circle effect is rela-
tively weak at 24 s period. The anisotropy amplitude is significantly
smaller in the second case of the straight-ray inversion, which indi-
cates that the smoothing regularization was too strong. Most places
with a significant difference in fast directions (>30◦) occur near
a transition in the fast direction of anisotropy where the results of
neither model are robust.

With the traditional inversion method, it is tricky to select the
right regularization parameters, and methods to do so are typi-
cally ad hoc. Many studies use trade-off curves between misfit and
model roughness or the number of degrees of freedom to select
the preferred regularization parameters (e.g. Boschi 2006; Zhou
et al. 2005). This is, however, difficult for azimuthal anisotropy
because by including 2ψ azimuthal anisotropy, for example, the
number of degrees of freedom at each node increases to 3 from 1
for an isotropic wave speed inversion despite the fact that the im-
provement in misfit is usually modest. For traditional tomography
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Figure 17. Same as Fig. 14, but for the 12 s Rayleigh wave.

applied to the 24 s Rayleigh wave phase speed data, the standard
deviation of traveltime misfit drops from around 3 s for a homo-
geneous reference model to 1.57 s after the straight-ray isotropic
speed inversion (Fig. 9b). However, it then only decreases slightly
to 1.53 s and 1.54 s for the two 2ψ azimuthal anisotropy inversions
(Figs 16a and d). With eikonal tomography, through the stacking
and binning process, we effectively separate the velocity variation
due to measurement error from anisotropy and are able to inspect
the observed azimuthally dependent phase speed measurements vi-
sually. In this way, the observed variance reduction is statistically

Figure 18. Same as Fig. 16, but for the 12 s Rayleigh wave. Agreement between the eikonal and straight-ray tomography is worse at 12 s than 24 s because of
the larger effect of off-great-circle propagation.

meaningful and can be used to indicate the confidence level of the
result.

The 12 s Rayleigh wave 2ψ azimuthal anisotropy results based
on eikonal tomography are presented in Fig. 17. Overall, the
anisotropy is robustly measured despite the fact that the ampli-
tudes of anisotropy are generally weaker and the fast direction pat-
tern is slightly different than the 24 s results. Fig. 18(a) shows an
example of the 12 s 2ψ azimuthal anisotropy determined by our
traditional straight-ray inversion with anisotropy amplitude plotted
in Fig. 18(b). The difference in fast directions compared to the
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eikonal tomography is summarized in the histogram in Fig. 18(c).
Compared with 24 s period, more significant differences in both the
fast directions and the amplitude patterns are observed, particularly
near regions where there are discrepancies between the two isotropic
wave speed maps (Fig. 10). We believe that the off-great-circle ef-
fect, which is more important for 12 s Rayleigh waves, is responsible
for most of the observed differences between the methods at this
period.

5 D I S C U S S I O N

5.1 Numerical simulations to test for systematic errors

To assess possible systematic errors due to approximations in the
eikonal tomography method, which include both dropping the am-
plitude term in eq. (2) and using a minimum curvature surface fitting
method to interpolate the phase traveltime surface, we perform a
series of 2-D finite difference simulations to solve the Helmholtz
equation numerically and obtain a synthetic traveltime database. We
invert this database based on eikonal tomography and evaluate the
difference between the tomography result and the input phase speed
model to constrain the systematic errors.

Two cases, 12 and 36 s periods, are studied here that represent
periods at the short- and long-period ends of our study. The isotropic
wave speed maps derived from the USArray data set and eikonal
tomography are used here as the input models (Figs 19a and 20a).
In each simulation, a periodic source centred at one station loca-
tion is used to generate a single frequency out-going wave that
propagates in the 2-D medium of the input wave speed model. The
resulting waveforms observed at all other station locations are used
to measure the phase traveltimes between those stations and the
effective source, where the measurements are made when the wave-
form stabilizes after several cycles. Although synthetic traveltimes
are available between all station pairs, to be comparable with the
inversion with real data, only those measurements included in the
original data sets are included. We follow the same procedure de-
scribed in Sections 3 and 4 to invert these synthetic data sets based
on eikonal tomography and both the isotropic and anisotropy results
are shown in Figs 19(b), (c) and 20(b), (c).

Unsurprisingly, the resulting isotropic speed maps, for both 12
and 36 s, closely replicate the large scale features of the input mod-
els, although small-scale anomalies in the input models tend to be
smoothed out. This smoothing effect is expected, as discussed in
Section 4.2. To assess other systematic errors, we smooth the in-
put models with a spatial Gaussian filters with a standard deviation
of 35 km and summarize the differences between the isotropic in-
version results and the smoothed input models in Figs 19(d) and
20(d). Deviations are most significant near the periphery of our sta-
tion coverage, particularly near regions with large velocity contrasts
such as regions near the Central Valley of California and the Sierra
Nevada for the 12 s case and the Southern Sierra Nevada for the 36 s
case where delamination is inferred by previous studies (e.g. Yang
& Forsyth 2006). Similar anisotropic deviations are also observed
for both the 12 and 36 s cases (Figs 19c and 20c), where the ampli-
tude of the anisotropy tends to correlate with the observed isotropic
wave speed deviations. This suggests that rapid velocity contrasts
near the periphery of the maps tend to distort the wave front dramat-
ically and the method becomes less robust. The observed isotropic
(Figs 19d and 20d) and anisotropic (Figs 19c and 20c) deviations
are also summarized as histograms in Figs 19(e), 20(e), 19(f) and
20(f), respectively.

We test whether we can reduce these deviations by including am-
plitude measurements in our synthetic data sets. Again, minimum
curvature surface fitting is used to first interpolate the synthetic
amplitudes measured at each station to construct amplitude sur-
faces before calculating the second term in eq. (2). The effect of
including the amplitude term is in general unnoticeable, which is
partly because the surface interpolation schemes we use here pro-
vides relatively smooth amplitude surfaces that tend to minimize the
Laplacian term in eq. (2). This is inevitable unless a denser station
network is available.

The observed isotropic and anisotropic amplitude deviations,
with standard deviations, approximately equal to 10 m s−1 and
0.3 per cent peak-to-peak (or 6 m s−1 assuming 4 km s−1 isotropic
speed; Figs 19e and f and 20e, and f), respectively, are generally
small relative to the observed isotropic velocity variations (Figs 9a
and 10a) and anisotropy amplitudes (Figs 14b and 17b). They are,
however, approximately on the same scale as the estimated uncer-
tainties derived from our statistical analysis (Figs 8a, b and 15c).
This suggests that the estimated uncertainties described in Section
4, which only accounts the random measurement errors, may un-
derestimate the difference between the tomography results and the
real medium properties. When numerical solutions are available,
such as here, systematic errors due to the tomography method can
be numerically estimated and a better estimation of the uncertainty
can be made by summing the effects of the systematic and random
measurement errors. However, this may prove impractical due to
the heavy computation required. Considering the positive correla-
tion between random (Figs 8a, b and 15c) and systematic errors
(Figs 19c, d and 20c, d), here we propose 1.5 as a rule of thumb
scaling factor to multiply the random error uncertainty estimations
to provide a more realistic uncertainty estimate.

We would like to emphasis here that the systematic errors dis-
cussed here are solely due to the imperfection in the tomography
method and do not account for systematic errors in traveltime mea-
surements. Systematic traveltime measurement errors can arise, for
example, due to timing errors or inhomogeneous noise source dis-
tributions for noise cross-correlation measurements. We believe
that the effect of inhomogeneous noise source distribution in our
results is small, however. Traveltime errors due to inhomogeneous
source distribution are likely similar between nearby stations. When
the gradient is calculated in eikonal tomography, these errors will
cancel.

5.2 Advantages and limitations of eikonal tomography

There are several significant advantages of eikonal tomography over
traditional surface wave tomography methods.

First, the implementation of the inverse operator for eikonal
tomography depends on operations to the data without explicitly
solving the forward problem. For a wave propagating in an inho-
mogeneous medium, the observed wave properties such as phase
traveltime are only linearly related to the local velocity structure
when structural perturbations are small. In other words, any lin-
earized forward operator, such as the ray or finite frequency sensi-
tivity integrals, and the inverse operator derived from it can only be
considered approximate. Errors caused by this linearization are of-
ten overlooked or are unknown, and moving beyond them requires
iterative simulations that are computationally expensive. Eikonal
tomography extracts the information about local velocity structure
directly from the data without explicitly constructing the forward
operator. It, therefore, finesses the non-linear nature of the problem
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Figure 19. (a) The input wave speed model for the 12 s simulations. The model is derived based on the isotropic result of eikonal tomography with real data
(Fig. 10a) where the model gradually smears into a homogeneous model near the boundary of the station coverage. (b) and (c) The isotropic and anisotropic
inversion results from eikonal tomography with the 12 s synthetic data set. (d) The difference between the synthetic inversion and smoothed input model where
positive values indicate that the synthetic inversion gives a higher local phase speed. (e) Normalized histogram of the speed difference across the studied region
between the synthetic inversion and the smoothed input model. (f) Normalized histogram of the anisotropic peak-to-peak amplitude of the synthetic inversion
across the studied region.

and should result in a better estimate of both the local isotropic and
anisotropic phase speeds, especially where off-great-circle propa-
gation is important.

Second, uncertainties in local phase speeds can be estimated
with eikonal tomography. Instead of minimizing a penalty func-
tional that usually includes some combination of global misfit and
model norm or roughness constraints, eikonal tomography directly
estimates local phase speed from independent measurements based
on different phase traveltime surfaces. Therefore, the uncertain-
ties of the resulting local phase speeds can be determined statisti-
cally in a straightforward way. The uncertainties are important for

later 3-D inversion and quantitative comparisons between different
models.

Third, eikonal tomography is free from explicit model regular-
ization. The method, therefore, eliminates the need to make ad
hoc choices of the damping and regularization parameters that are
sometimes controversial and may result in dubious models. This
particularly is a problem for studies of surface wave azimuthal
anisotropy because the increased number of degrees of freedom is
often not offset by a comparable improvement in misfit. Eikonal
tomography with the additional smoothing intrinsically embedded
in the phase front tracking process has no explicit regularization
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Figure 20. Same as Fig. 19, but for the 36 s simulations.

and the subjectivity of the inverter to affect the tomographic result
is restricted.

Fourth, the azimuthal dependence of phase speeds can be mea-
sured directly without assuming its parametric form. Unlike classic
studies of Pn azimuthal anisotropy (e.g. Morris et al. 1969) where
the wave speed variation with the direction of propagation is ob-
served directly, traditional surface wave tomography typically posits
the relationship between phase speed and the direction of wave
propagation based on theoretical studies of weakly anisotropic me-
dia (e.g. Smith & Dahlen 1973). The ability to measure and observe
the azimuthal dependence of phase speeds directly leads to greater
confidence in the information about anisotropy.

There are several limitations on eikonal tomography worthy of
note. First, unlike traditional inversion methods where the resolu-
tion is controlled by path or kernel densities, eikonal tomography
estimates the coherence length of the measurements that is con-

trolled by station spacing. Without applying a more sophisticated
traveltime surface interpolation method, this prohibits the use of
this technique to resolve structures smaller than the inter-station
spacing.

Second, when long period or more complicated surface waves
are considered, the second term in eq. (2) can have values more
similar to the magnitude of the phase speed anomalies that we
seek to resolve. Although our simulations show that the amplitude
term is relatively unimportant for our data set, other theoretical and
numerical studies, such as Wielandt (1993) and Friederich et al.
(2000), suggest that when either the velocity anomaly is smaller
than a wavelength or the incoming wave is complicated by mul-
tipathing, neglect of the amplitude term by the eikonal equation
can blur the velocity anomaly and cause systematic errors in the
phase speed measurements. It is possible to solve this problem
by inverting both phase and amplitude together, which amounts to
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recasting the problem in terms of the Helmholtz equation. Ampli-
tude measurements are, however, less accurate than phase measure-
ments and the second spatial derivative of the amplitude variation
tends to be unstable and is underestimated, particularly when the
station spacing is sparse. The situation is even worse for measure-
ments based on ambient noise cross-correlations where amplitudes
have been separately normalized for different stations, so that mean-
ingful amplitude information has been lost. Amplitude anomalies
then mainly reflect the distribution of ambient noise sources not
structural gradients.

Third, traveltime interpolation schemes usually are unreliable
near the periphery of the station coverage that results in increas-
ing both random and systematic errors. Hence, the area that can
be imaged by the eikonal tomography method is generally smaller
than when a traditional tomography method is applied (Figs 9 and
10). It requires a large-scale array, such as the TA, to really take
the advantages of the eikonal tomography method where both ap-
plicable areas can be extended and measurement uncertainties can
be significantly reduced when ambient noise method is applied.

5.3 Applicability to earthquake tomography

To construct the phase traveltime surfaces in this study we use
measurements of ambient noise. In principle, however, eikonal to-
mography can be applied to phase traveltime measurements based
on earthquake waveforms. There are a few differences, however,
considering the nature of earthquake measurements.

First, surface waves emitted by a distant source usually develop
a certain amount of multipathing that can potentially invalidate
the assumption of smoothly varying amplitudes. In fact, this is the
fundamental concept of the two plane wave inversion method (e.g.
Yang & Forsyth 2006). Friederich et al. (2000) showed numerically
how wave complexity can contribute to uncertainties in the local
phase speeds inferred from the eikonal equation. This problem is
relatively minor for measurements based on ambient noise cross-
correlations in the western USA because the effective sources (i.e.
the stations in the ambient noise method) usually are relatively close,
with average distances near 700 km. Other than at the short period
end of our study and near regions with sharp velocity contrasts, this
is usually too short for multipathing to be well developed. Second,
surface wave studies based on teleseismic events usually focus on
longer periods (>25 s) due to the strong scattering and attenuation
of shorter period signals. At longer periods, when a wavelength is
larger than the size of a velocity anomaly, the second term in eq. (2)
can blur and distort the velocity anomaly that we wish to resolve
(Friederich et al. 2000).

Considering these factors, the amplitude term may play a big-
ger role in eikonal tomography based on earthquake measurements
and the second term in eq. (2) should probably be properly taken
into account. Unlike ambient noise cross-correlation measurements
where only the phase information is retained, the amplitude of the
surface wave emitted by an earthquake can be used in the inversion
as well. By including amplitude information, the Helmholtz equa-
tion can be applied instead of the eikonal equation, and may resolve
the local phase velocity structure with greater certainty (Wielandt
1993; Friederich et al. 2000; Pollitz 2008).

6 C O N C LU S I O N S

We present a new method of surface wave tomography called eikonal
tomography and argue that this method presents an improvement

over traditional methods of ambient noise tomography, particu-
larly as the method is applied to data from the TA component of
EarthScope/USArray. The method initiates by tracking phase fronts
across the array to produce phase traveltime maps centred on each
station, considered as an ‘effective source’. The method culminates
by interpreting the local gradients of the phase time surfaces in
terms of local phase speed and the direction of propagation of the
wave.

The most significant advantages of eikonal tomography com-
pared to traditional straight-ray tomography are its more accurate
representation of wave propagation, its ability to produce meaning-
ful uncertainty information about the inferred phase speed maps
and its production of more reliable information about azimuthal
anisotropy. Improvements in the isotropic dispersion maps result
predominantly from the method’s ability to track the direction of
propagation of waves, which is tantamount to use of off-great-circle
geometrical rays but without the need for iteration. Improvements
in information about azimuthal anisotropy derive from the method’s
freedom from ad hoc choices in regularization. This provides more
reliable information about the amplitude of anisotropy, in particular.
In addition, the method provides a local visualization of how phase
speeds vary with azimuth, which we believe adds considerably to
confidence in the results.

Eikonal tomography is an approximate method. It accurately
tracks the direction of wave propagation but only approximately in-
corporates what may be traditionally thought of as finite-frequency
effects and assumes a single wave propagating at each point in space.
To improve the ability to resolve small-scale feature and reduce sys-
tematic errors, future work will focus on finding more sophisticated
interpolation schemes as well as incorporating the amplitude term
of eq. (2).
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