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[1] In this study, we analyze continuous data from all
Global Seismographic Network stations between year 2000
and 2009 and demonstrate that several body wave phases
(e.g., PP, PcPPKP, SKSP, and PPS) propagating between
nearly antipodal station pairs can be clearly observed
without array stacking using the noise/coda cross-correlation
method. Based on temporal correlations with global seis-
micity, we show that the observed body waves are clearly
earthquake related. Moreover, based on single-earthquake
analysis, we show that the earthquake coda energy observed
between ~10,000 and 30,000 s after a large earthquake
contributes the majority of the signal. We refine our method
based on these observations and show that the signal can be
significantly improved by selecting only earthquake coda
times. With our improved processing, the PKIKP phase,
which does not benefit from the focusing effect near the
antipode, can now also clearly be observed for long-distance
station pairs. Citation: Lin, F.-C., and V. C. Tsai (2013), Seismic
interferometry with antipodal station pairs, Geophys. Res. Lett., 40,
doi:10.1002/grl.50907.

1. Introduction

[2] Seismic interferometry or ambient noise cross correlation
has now routinely been used to extract travel-time information
between two stations and applied to study interior earth struc-
ture [Brenguier et al., 2007; Moschetti et al., 2010; Lin et al.,
2011].While extracting surface waves is still themajor applica-
tion [e.g., Shapiro et al., 2005;Yao et al., 2006; Lin et al.,
2008], several recent studies have also shown that extracting
deep-penetrating body waves using seismic interferometry is
possible [Poli et al., 2012; Lin et al., 2013; Nishida 2013;
Boué et al., 2013]. The body wave phases, however, remain
relatively weak and array stacking techniques are needed to
strengthen the signals. Different source mechanisms, such as
oceanic seismic hum [Nishida, 2013] and earthquake coda
[Lin et al., 2013], have been proposed to explain the
observation of body waves in noise cross correlations.
[3] In this study, we demonstrate that deep-penetrating

body wave phases propagating between the two stations
can be extracted using seismic interferometry without array
stacking. Specifically, we show that clear body wave signals
can be observed in noise cross correlations [Bensen et al.,
2007] of nearly antipodal Global Seismographic Network

(GSN) station pairs [Figure 1a; Butler et al., 2004] using
~9 years of data. At the antipode, many body wave phases
(e.g., PP, PcPPKP, and SKSP; Figure 1b) tend to amplify
due to geometrical focusing, which has long been observed
in earthquake studies [Rial and Cormier, 1980; Butler and
Tsuboi, 2010]. Based on the temporal variability of the signals,
we show that the presence of these deep-penetrating phases is
clearly earthquake related, consistent with our earlier study
[Lin et al., 2013]. Moreover, based on single-earthquake
analysis, we show that coda energy excited by large earth-
quakes is the main contributor to the observed body waves.
The coda energy is excited by large earthquakes through a
number of different wave processes such as scattering, reflec-
tion, refraction, and diffraction and can be considered as
semidiffusive [Aki, 1969; Campillo and Paul 2003]. We show
that by only using the coda energy between 10,000 and
30,000 s after large earthquakes, the observed body wave sig-
nals can be considerably improved. The observation of a clear
PKIKP phase, which is not affected strongly by geometrical
focusing, demonstrates the potential to significantly improve
the existing path coverage for deep earth study [e.g., Morelli
et al., 1986; Sun and Song, 2008].

2. Data and Results

[4] We closely follow the method described by Bensen et al.
[2007] and Lin et al. [2008] to obtain traditional vertical-vertical
ambient noise cross correlations using continuous data between
year 2000 and 2009 for all available GSN stations. This method
uses temporal normalization (using the running-absolute-mean
over a 128 s time window of the 15 to 50 s bandpassed
raw noise waveform) to suppress impulsive high-amplitude
earthquake signals. While the temporal normalization pro-
cess also slightly suppresses earthquake coda to the ambient
noise level, no further processing is used to reduce earth-
quake contributions. Spectral whitening is also applied to
flatten the amplitude spectrum between a 5 and 800 s period
before cross correlation.

2.1. Noise Cross Correlations and Body Wave Phases

[5] In this study, we focus our analysis on nearly antipodal
station pairs. The noise cross correlations for the five GSN
pairs that are closest to 180° separation are shown in
Figure 1c. The body wave phases including PP, PcPPKP,
and SKSP (Figure 1b) can be clearly observed on both posi-
tive and negative time lags for station pairs PAB-SNZO and
BBSR-NWAO, where the station separations are within 2°
from being antipodal. These body wave phases are mostly
absent for the station pairs MBWA-SJG, KBS-SBA, and
KIP-TSUM, where the stations are slightly farther away
(>4°) from their respective antipodal locations. The observa-
tion of these body waves and the dependency on station
separation closely resembles the classic study of Rial and
Cormier [1980] based on the 1968 New Zealand Inangahua
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earthquake. Note that the PKIKP phase does not benefit from
the focusing effect at the antipode and is only weakly observed.
[6] The observation of strong body wave phases for antipo-

dal station pairs provides a unique opportunity to better under-
stand the source of the cross-correlation signals. In particular,
we can now examine the correlation between strong body
waves and global seismicity without array stacking [Lin
et al., 2013]. To strengthen the signals and suppress noise,
all further cross correlations shown are low-passed with a
10 s corner period and are symmetric-component cross corre-
lations with positive and negative time lags stacked together.
[7] Figure 2a shows cross correlations for the BBSR-

NWAO station pair stacked by days with earthquakes above
a given magnitude threshold (i.e., all days, Mw> 6.3,
Mw> 7.0, Mw> 8.0, and 5 July 2008 single day) in the
Global Centroid Moment Tensor (CMT) Catalog [Ekström
et al., 2012]. Clear body wave signals are observed in all
cases even for the single-day cross correlation of 5 July
2008, when a Mw 7.7 deep earthquake happened beneath the
Sea of Okhotsk (~636 km in depth; Figure 1a). Despite the sig-
nificant reduction in the number of days, from 2454 days in to-
tal to 435 and 93 days, when the Mw> 6.3 and Mw> 7.0

selection criteria are used, the amplitude of the body waves
is only reduced by a factor of 2 and 4, respectively. Because
the noise level of a cross correlation is generally proportional
to the square root of the total time duration used, the
Mw> 6.3 and Mw> 7.0 stacks actually have slightly higher
signal-to-noise ratios compared with the ’all days’ stack
because of lower noise levels. These observations suggest that
the ambient noise contribution (without earthquake coda, e.g.,
due to ocean microseism) to the body wave observation is
likely to be small and including all ambient noise signals can
contribute negatively to the overall signal-to-noise ratio. On
the other hand, the factor of ~10 amplitude decrease from
Mw> 7.0 to Mw> 8.0 is on the same order as the reduction
in the number of days, suggesting that the largest earthquakes
do not necessarily contribute more. This is probably because
the largest earthquakes tend to be shallower and therefore ex-
cite more surface waves than body waves.
[8] To further demonstrate the correlation between the

observed body waves and global seismicity, in Figure 2b,
we plot a histogram of all the daily cross-correlation ampli-
tudes at a lag time of 1736 s for the BBSR-NWAO station
pair. This lag time corresponds to the observed arrival of
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Figure 1. Ambient noise cross correlations for five nearly antipodal GSN station pairs. (a) The triangles mark the locations
of the GSN stations used in this paper, with antipodal pairs colored the same. The star shows the location of the 5 July 2008
Mw 7.7 Sea of Okhotsk earthquake used in Figures 2 and 3. (b) Schematic plot of the PKIKP (black), PP (blue), PcPPKP (red),
and SKSP (green) raypaths. The star and filled triangle denote source and receiver locations, respectively. (c) The observed
broadband ambient cross correlations sorted by distance. Several observed body wave phases are indicated.
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PcPPKP [Rial and Cormier 1980], which is the strongest
phase observed for the nearly antipodal station pair
(Figure 2a), and the phase has a negative amplitude in the
vertical-vertical cross correlations. Two regions with very
different distributions are observed above and below an
amplitude of �0.008 (Figure 2b). (Note that these ampli-
tudes have arbitrary units due to the temporal and spectral
normalizations but can be compared with the ~0.0025 rms
noise level of each daily cross correlation.) Above an ampli-
tude of �0.008, a Gaussian-like distribution centered
slightly below zero with a width of ~0.0025 is observed,
and contains over 95% of the days we analyzed. Below
�0.008, on the other hand, a relatively flat distribution is
observed. Despite this flat part of the distribution containing
only ~4% of the days we analyzed (107 out of 2453 days), it
contributes to more than half of the PcPPKP amplitude
observed in the full stacked cross correlation shown in
Figure 2a (top panel). Comparing the days within the flat
region with global seismicity [Ekström et al., 2012] reveals
that, out of the 107 days, there are 50 days with earthquakes
Mw> 7.0 and 33 days with earthquakes Mw> 7.0 on the
previous day. Note that there are 93 days in total with
Mw> 7.0 out of the entire 2346 days we studied. This corre-
lation suggests that the observation of body waves in our
noise cross correlations is likely due to constructive interfer-
ence of earthquake coda energy, which potentially lasts for
hours after large earthquakes. Similar observation can be
made for another nearly antipodal station pair PAB-
SNZO, where occurrences of large PcPPKP amplitudes
are highly correlated with the times for which BBSR-
NWAO also has large PcPPKP amplitudes (Figure S1 in
the supporting information).

2.2. Coda Cross Correlation

[9] To demonstrate that the earthquake coda, rather than
the early-arriving earthquake body waves, contributes most
to the observed body waves, we analyze the temporal varia-
tion of the cross correlation for the BBSR-NWAO station pair
for 5 July 2008. On that day, the Mw 7.7 Sea of Okhotsk

earthquake happened around 2:12 A.M. UTC time [Ekström
et al., 2012; Figure 1a]. Figure 3a shows the raw waveforms
and the waveforms after the temporal and spectral normaliza-
tion for stations BBSR and NWAO. Note that running-abso-
lute-mean amplitudes of 15–50 s bandpassed waveforms are
used to suppress the earthquake signal [Lin et al., 2008].
While the temporal normalization process levels the waveform
amplitude within the 15–50 s period band, the amplitude of the
broadband waveform is not completely leveled (e.g., lower
two panels of Figure 3a).
[10] We calculate cross correlations based on the normalized

time series using three different time windows (Figure 3b).
The 0–20,000, 20,000–40,000, and 40,000–60,000 s time
windows of the day (UTC time) roughly contain the earth-
quake main phases, early earthquake coda, and late earth-
quake coda, respectively, with the earthquake origin UTC
time being at ~8000 s. As shown in Figure 3b, only the cross
correlation using the early earthquake coda time window
results in a clear PcPPKP phase. To further understand the
evolution of the body wave signal, we also calculate the ac-
cumulated cross-correlation amplitudes at positive and neg-
ative 1736 s time lags (the expected PcPPKP arrival time)
using a time window with a fixed zero starting time and a
sliding ending time. A continuous increase in PcPPKP
amplitude (i.e., cross-correlation amplitude becoming more
negative) is observed for both positive and negative time
lags between ~10,000 and ~50,000 s after the earthquake
(Figure 3c), but the decrease is particularly strong between
~10,000 and ~30,000 s after the earthquake. The decreasing
cross-correlation amplitude represents the continuous accu-
mulation of PcPPKP energy propagating between the two
stations after the earthquake. We consider this to be direct
evidence that the continuous long-lasting coda energy
excited by a large earthquake is partially diffusive, and that
deep body wave seismic interferometry is best applied to this
coda time period. In particular, we identify the coda time win-
dow between 10,000 and 30,000 s after a large earthquake as
the most energetic time period for deep body wave seismic
interferometry. Similar observations can be made using other
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Figure 2. Correlation between the observed core phases and global seismicity. (a) The cross correlations between BBSR and
NWAO from stacking different numbers of days. The selection criterion and the total number of days included are indicated on
the right. Several observed body wave phases are indicated. (b) The distribution of the daily cross-correlation amplitudes at
1736 s lag time. A dashed line at an amplitude of�0.008 is shown that separates the Gaussian-like distribution on the right from
the flatter distribution on the left. The total number of days and the summed amplitude for the two distributions are indicated.
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earthquakes, both shallow and deep, and for other nearly an-
tipodal station pairs (e.g., see Figures S2 and S3 in the
supporting information). Note that the accumulation of body
wave energy stops when the coda energy attenuates below
the surface-wave dominated ambient noise or if a following
event’s surface waves dominate the signals.
[11] The observation above naturally leads to the refine-

ment of our seismic interferometry process to better extract
deep propagating body waves. Specifically, we propose to in-
clude only the most energetic coda time windows after large
earthquakes in the cross-correlation calculation. While an ‘all
days’ stack includes the earthquake coda energy, it also in-
cludes many undesired noise signals and hence reduces the
signal-to-noise level of the observed body waves.
[12] Figure 4 shows the cross correlations for the five sta-

tion pairs shown in Figure 1 but only stacking time windows
with earthquake coda energy. Here, we select all earthquakes
larger than Mw 7.0 in the Global CMT Catalog [Ekström
et al., 2012] and include all time series between 10,000
and 30,000 s after the earthquakes. The signal-to-noise ratio
clearly improves compared to the original ambient noise
cross correlations (Figure 1c), and now clear body wave
phases (including PKIKP) can be observed at all five station

pairs. The ability to extract deep body wave phases such as
PKIKP propagating between each permanent GSN station
pair can potentially significantly improve data coverage
for deep earth study. The fact that body waves traveling
through the exact same paths can be repeatedly measured
at different times may also potentially be useful for studying
temporal variations in deep earth structure [e.g., Butler and
Tsuboi, 2010].

3. Concluding Remarks

[13] The observed correlation between global seismicity
and the strength of body wave phases in this study is gener-
ally consistent with our earlier result based on regional
arrays using array stacking [Lin et al., 2013]. This is perhaps
not surprising considering that both studies focus on body
waves that propagate through the deep earth. Quantifying
the uncertainty in arrival times of body waves extracted by
seismic interferometry, the importance of different wave pro-
cesses (e.g., scattering, reflection, refraction, and diffraction)
on coda generation, and the effect of earth heterogeneity on
the body wave observations remain subjects of future contri-
bution. Initial examination suggests that the observed body
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wave amplitudes are dependent on the earthquake magnitude
but are not strongly dependent on the location and depth of
earthquakes (Figures S1, S2, and S3 in the supporting infor-
mation). While it remains unclear whether shallower body
wave phases such as direct P and direct S can also be better
extracted using earthquake coda, applying coda interferome-
try to calculate autocorrelations for GSN stations suggests
that several core phases (e.g., ScS and PKIKP2; Figure S4
in the supporting information) can also be extracted without
array stacking. This improvement can be particularly signifi-
cant for extraterrestrial studies where the number of stations
is limited [Weber et al., 2011; http://insight.jpl.nasa.gov/
home.cfm]. The ability to extract the ScS phase and deter-
mine its polarity using autocorrelation, for example, would
provide direct evidence on the existence of a liquid outer core
for extraterrestrial planets.
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