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High-resolution seismic 
tomography of Long Beach, CA 
using machine learning
Michael J. Bianco1*, Peter Gerstoft1, Kim B. Olsen1,2 & Fan-Chi Lin3

We use a machine learning-based tomography method to obtain high-resolution subsurface 
geophysical structure in Long Beach, CA, from seismic noise recorded on a “large-N” array with 5204 
geophones (~13.5 million travel times). This method, called locally sparse travel time tomography 
(LST) uses unsupervised machine learning to exploit the dense sampling obtained by ambient noise 
processing on large arrays. Dense sampling permits the LST method to learn directly from the data 
a dictionary of local, or small-scale, geophysical features. The features are the small scale patterns 
of Earth structure most relevant to the given tomographic imaging scenario. Using LST, we obtain a 
high-resolution 1 Hz Rayleigh wave phase speed map of Long Beach. Among the geophysical features 
shown in the map, the important Silverado aquifer is well isolated relative to previous surface wave 
tomography studies. Our results show promise for LST in obtaining detailed geophysical structure in 
travel time tomography studies.

In contrast to seismic events, ocean-atmospheric interactions provide a nearly continuous excitation of the solid 
Earth1,2. Observations of these apparently random, low amplitude seismic waves on seismic sensor arrays, often 
referred to as seismic “noise”, can yield rich information about geophysical properties within the region of the 
array3–5. In ambient noise tomography (ANT), this noise is cross-correlated between seismic sensors over periods 
of days to months to obtain travel times between sensors6–14. These travel times are used to perform tomography, 
estimating the subsurface phase speed structure for a region of interest4,6. Despite the fact that the number of 
travel times in ANT can be very large (N(N − 1)/2, with N the number of sensors) and the coverage of a region 
dense, the estimation of high-resolution phase speed structure with ANT remains a difficult problem due to 
many factors, e.g. irregular sensor distributions, phase ambiguities in the cross-correlations, and non-isotropic 
noise distributions8. Here we obtain high-resolution subsurface geophysical structure in Long Beach, CA using a 
machine learning-based tomography method, called locally sparse travel time tomography (LST)15. Existing ANT 
methods potentially oversimplify true geophysical structure by assuming phase speed models are smooth. LST 
improves the fidelity of ANT phase speed maps by using dictionary learning16,17, a form of unsupervised learning, 
to learn the relevant geophysical characteristics directly from seismic data. Indeed, we find that the 1 Hz Rayleigh 
surface wave phase speed map obtained with LST illuminates geophysical features unseen in previous surface 
wave tomography studies of the region. Specifically, the Silverado aquifer which supplies nearly 90% of the fresh 
water in Long Beach is well isolated relative to previous surface wave tomography studies. Our results show LST 
improve estimates of geophysical structure in travel time tomography studies.

Recently, machine learning techniques have found many useful applications in seismology18,19, including seis-
mic waveform classification20,21, event localization11,22, earthquake prediction23, and earthquake early warning24. 
In part, the success of these methods is derived from large amounts of training and ground-truth data. In ANT 
however, little training data exists. LST addresses this issue by using an unsupervised machine learning method, 
called dictionary learning, to constrain slowness features in the tomographic image. This procedure is derived 
from the adaptive dictionary learning paradigm from image processing17,25,26, in which dictionaries are learned 
directly from corrupted measurements. In adaptive image denoising25, the dictionary is trained on small rectan-
gular groups of pixels, called patches, of a noisy image. In LST, slowness dictionaries are learned from patches of 
a least squares-regularized inversion, and are subsequently used to reconstruct a sparsity-constrained slowness 
image. The dictionary is initially unknown and is learned iteratively, assuming sufficiently dense ray sampling 
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(details in Methods). Relative to previous travel time tomography methods which enforce either smooth or dis-
continuous models, including conventional straight ray27 and eikonal tomography8, the sparse model in LST per-
mits both smooth and discontinuous geophysical features. This approach is related to wavelet based methods28, 
however in LST the atoms are adapted to the slowness features in the data using dictionary learning.

Results
Using LST, we perform surface wave ANT with data from the Long Beach array (Fig. 1A,B). The Long Beach 
array was deployed from January to June 2011 as part of a petroleum industry survey. It was a very dense, 
“large-N” array with 5204 high-frequency vertical velocity sensors distributed over a 7 × 10 km area (Fig. 1A). 
We obtained Rayleigh surface wave travel times between all station pairs in the array by cross-correlating seis-
mic noise recorded during the period 5–25 March 2011. With N = 5204, this yielded ~13.5 million travel times, 
which was reduced in preprocessing. We discretized the footprint of the Long Beach array into a 300 × 206 pixel 
(N-S × E-W) phase-speed map (Fig. 1B), which corresponds to pixel sizes of 35 × 35 m. The phase speed for each 
pixel is estimated by LST with the Rayleigh wave travel times.

Travel time data.  We use the 1 Hz Rayleigh surface wave band from the Long Beach data, which corresponds 
to near-surface geophysical features (~100–500 m depth). For each station pair, cross-correlations of all 1-h seg-
ments from the 3-week recording were normalized and stacked to obtain the causal and anti-causal travel times. 
The final travel times were obtained by averaging these causal and anti-causal components8. After quality control 
the number of useful cross-correlations for 1 Hz was ~8.5 million. Quality control included SNR thresholding 
and removal of travel times with ranges less than one wavelength. The cross-correlations further suffered from 
phase ambiguities, which were reduced in preprocessing. This was done by clustering the rays27 and filtering 
travel times that exceeded the median travel times of the clusters by one half-period (0.5 s for 1 Hz). Further, 
cross-correlations were rejected if travel times from virtual source pairs disagreed by more than one-half period. 
This reduced the number of useful cross-correlations to ~3 million. For further details and preprocessing steps, 
see Methods and8.

LST implementation.  The 1 Hz Rayleigh surface wave travel times are used by LST to estimate a 300 × 206 
pixel phase speed image of the Long Beach region. We assume straight-ray surface wave propagation, which yields 
a simple linear measurement model (Eq. 1). Using the measuments, LST alternates between solving larger-scale, 
or global, phase speed features (details in Methods) and smaller-scale or local phase speed features. The global 
problem (Eq. 4) is solved by least squares. Since the tomography matrix is sparse, we use the sparse least square 
program LSMR29. The local sparse problem (Eq. 5) is solved using orthogonal matching pursuit25, and the dic-
tionary is learned using the iterative thresholding and signed K-means algorithm30. The reference phase speed is 
constant, and estimated as the average phase speed of all ray paths.

Figure 1.  Location of Long Beach Array and LST phase speed map. The Long Beach array located in (A, 
modified from Google Maps48), contained 5204 stations (dots in (B)) distributed over a ~70 km2 area. (B) Locally 
sparse tomography (LST) phase speed maps of Long Beach, CA at 300 × 206 pixel resolution, using 3 million 
travel times. The Newport-Inglewood (NI) fault network (black lines) and the valid boundary for LST (red line) 
are shown.
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The LST tuning parameters are {n, T, Q, λ1, λ2}. n is the number of pixels per patch. We use square, 10 by 10 
pixel patches, giving n = 100 pixels per patch (yielding 300 × 206 = 61,800 patches). We assume sparsity T = 2 (see 
Eq. 5), meaning that each patch uses two atoms from the dictionary D. Each atom in D is a vector with dimension 
n = 100 pixels (the patch size). We assume D has Q = 200 atoms, or twice the patch dimension. D is initialized 
with Gaussian random vectors of unit norm. λ1, which is the ratio of travel time error variance to global slowness 
variance is set as λ1 = 13 km2 (see Eq. 4). λ2, which is the ratio of patch slowness variance to global slowness var-
iance, is set as λ2 = 0 assuming a sparse slowness representation (see Eq. 5). When λ2 = 0, the sparse slowness is 
simply the average of the patch slownesses (see Methods).

Interpretation of phase speeds.  In the middle of the LST phase speed image (Fig. 1B), particularly to the 
West, a large fast anomaly is observed between 33.78° and 33.82° latitude. This fast anomaly corresponds well with 
the Upper Wilmington (UW) Quaternary formation, which includes the Silverado water bearing unit (Lower 
Pleistocene age, ~300–580 ka) that supplies nearly 90% of the total ground water extracted in Long Beach31,32. 
Based on a 3D model32 (Fig. 2A) of the water-bearing structures in Long Beach obtained using borehole, seis-
mic, and gravity surveys, the Silverado is significantly denser (2,290 kg/m3) than the surrounding formations 
(2,050–2,100 kg/m3) due to its coarse-grained facies. From empirical relations of density and seismic wave speeds, 
we expect the UW formation to increase Vs by ~150% relative to the surrounding formations (see Methods). Since 
Rayleigh wave phase speed is dependent primarily on Vs, we conclude that this high velocity region of the map 
likely corresponds to the Silverado aquifer.

The proposed attribution of the fast anomaly to the Silverado aquifer is further supported by simulating 
the 1 Hz Rayleigh surface wave phase speed (Fig. 2D) using the Silverado depth range inferred in32 and31 (see 
Methods). In the region of the survey used from32, where both Silverado depth and thickness were available, the 
simulation shows a gradual increase in phase speed from south to north. However, per31, the Silverado is likely 

Figure 2.  Comparison of survey-inferred geophysical features with LST phase speed map. (A) Inferred 
stratigraphy along ~N-S profile in (C, modified from32), with the 4 deep wells used as constraints. The wells 
are located at Pier F, Pier C, Long Beach Cabrillo High School (LBCH), and Long Beach Webster (LB Webster) 
elementary school, 1 km west of the Long Beach array. (B) 1 Hz average Vs depth sensitivity kernel from8 
and overlap of northern end of the inferred Silverado (shown in (C)) with Vs sensitivity, indicated in red. 
(C) Inferred Silverado elevation32 overlain with LST 1 Hz Rayleigh wave phase speed map (Fig. 1B, modified 
from32), with wells (blue dots), and the location of the stratigraphy profile (blue line). (D) Hypothesized 1 Hz 
Rayleigh surface wave phase speed calculated from geological properties and inferred Silverado elevation range 
(C), from31,32.

https://doi.org/10.1038/s41598-019-50381-z


4Scientific Reports |         (2019) 9:14987  | https://doi.org/10.1038/s41598-019-50381-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

absent about 1 km south of the NI fault in the region of the Long Beach array (Fig. 3). With this assumption for 
the simulation, the predicted trend and magnitude and phase speeds south of the NI fault compare well with the 
LST result (Fig. 1B). Relative to the eikonal tomography phase speed estimates of the Long Beach (Fig. 4B), the 
phase speed from LST better shows the broad fast region predicted by the simulation. It is clear that the Silverado 
is resolved particularly well by the LST in the west-central region. Moreover, well logs support an extension of 
the high-velocity anomaly toward the NE across the Newport-Inglewood (NI) fault zone. This is observed in the 
LST phase speeds (see Fig. 2D), beyond the region of the gravity survey. The LST result appears to corroborate 
the older study31, and contradicts some of the results of32, which was based exclusively on a gravity survey in the 
region of the Long Beach array.

Discussion
These results show that the LST method, by assuming that patches of seismic phase speed fields are repetitions 
of a set of few patterns, contained by the dictionary, can be used to further leverage existing seismic data to 
obtain high-resolution phase speed images from regions of interest. Since the dictionary (Fig. 5A) is learned from 
the travel time data data via machine learning, it is well adapted to the true phase speeds. LST with dictionary 

Figure 3.  Silverado base depth (ft) inferred from borehole measurements in Poland et al.31 overlain with LST 
phase speed (Fig. 1B), modified from31. The results of31 contradict32, suggesting Silverado is absent south of the 
high phase speed anomaly in the west-centra part of the LST map. The findings of31 are corroborated by the 
LST result. The lower extent of the high-speed anomaly is used to generate a hypothesized phase speed map 
(Fig. 2D). We also note that the phase speed anomalies near and to the north of Signal Hill (indicated above) 
correlate well with the contours.
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learning provides a flexible model that is capable of modeling smooth and discontinuous slowness features. In 
the context of ambient noise tomography, LST leverages the dense sampling by learning the phase speed pat-
terns. Thus, we obtain high-resolution slowness maps that well complement other geophysical sensing modal-
ities and existing studies, for better estimating at least near-surface Earth structure. In this novel application of 
machine learning theory to near-surface seismic tomography, it is likely that we have further-characterized key 
water-bearing aquifers in Long Beach. We believe LST can help provide important geophysical insights in many 
tomography scenarios.

Methods
LST theory and implementation.  Our proposed locally-sparse travel time tomography (LST) approach 
obtains high resolution by assuming that small patches of discrete phase speed maps are repetitions of few ele-
mental patterns from a dictionary of patterns. Such patterns, referred to as atoms (chemistry analogy) are learned 
in parallel with the inversion using dictionary learning, a form of unsupervised machine learning. Relative to 
conventional tomography methods, the sparsity of the dictionary representation permits smooth and discontin-
uous, high-resolution features where warranted by the data. In the following, we present an overview of the LST 
theory. For more details, please see15.

In LST, surface wave propagation is approximated as straight ray paths through an N = W1 × W2 pixel phase 
speed map, and the travel time perturbations t ∈ ℝM from a known reference for M rays are modeled as

Figure 4.  Comparison of 1 Hz Rayleigh surface wave phase speed maps from (A) LST, (B) eikonal, and 
(C) conventional tomography8 with the NI fault network (black lines). The general trends are the same for 
LST, eikonal, and conventional, though there is greater contrast and phase speed range observed in the LST 
map. There is greater contrast along the NI fault lines for LST. The largest disagreement between the LST/
conventional result and eikonal tomography is in the western region of the map, where the LST is imaging the 
Silverado aquifer.

Figure 5.  Comparison of (A) dictionary learned in LST inversion of Long Beach array data (Figs 1B and 
2C,D), and generic dictionaries (B) Haar wavelet and (C) discrete cosine transform. All dictionaries shown 
with 169 atoms (n = 100). The atoms are sorted in order of decreasing variance from top to bottom (left to 
right). The learned dictionary atoms (A) with sharper, oriented gradients (higher variance) correspond to the 
sharper features in the LST phase speed map (e.g. the boundaries of the Silverado aquifer, Fig. 1B), whereas the 
smoother atoms (lower variance) are related to the smoother regions. Atom values stretched to full grayscale (0 
to 1) for display.
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= +t As , (1)g

where A ∈ ℝM×N is the tomography matrix, sg ∈ ℝN is the perturbation global slowness (inverse of speed), and 
 ∈ ℝM is Gaussian noise σε I(0, )2 , with σ2

  the noise variance. We call Eq. 1 the global model, as it captures the 
large-scale features that span the discrete map and generates t.

We consider a second slowness model perturbation ss ∈ ℝN, called the sparse slowness, in which ×n n  
groups of pixels are represented as sparse linear combinations of atoms from a dictionary. The patches are selected 
from ss ∈ ℝN by the binary matrix R ∈ {0, 1}n×N, and modeled as

= − =ˆ Tx R s Dx xarg min subject to ,
(2)

i i i i
x

s 2
2

0
i

where Riss ∈ ℝn is the i-th patch, D ∈ ℝn×Q is the dictionary of Q atoms, x̂i ∈ ℝQ coefficient estimates for the i-th 
patch, and T is the number of non-zero coefficients in x̂i. We consider all overlapping patches, and wrap the 
patches at the edges. Thus the number of patches is N. The 0 pseudo-norm penalizes the number of non-zero 
coefficients25. We call Eq. 2 the local model, as it captures the smaller scale, localized features contained by 
patches. The dictionary D is assumed unknown and is learned from the data during the inversion.
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∑
σ σ σ

=







− + − + −







= ∀
ε

ˆ ˆ ˆ

T i

s s X t As s s Dx R s

x

{ , , } arg min 1 1 1

subject to , (3)

p i i
i i

i

s s X
g s

, ,
2 g 2

2

g
2 g s 2

2

,
2 s 2

2

0

g s

where ŝg is an estimate of the global slowness perturbation, σg
2 is the global slowness variance, ŝs is the estimate 

of the sparse slowness perturbation, σp,i
2 is the variance of the patch slowness, and X ∈ ℝQ×I is the coefficient 

estimates.
We find the MAP estimates {ŝg,ŝs,X} using a block-coordinate minimization algorithm by decoupling the local 

and global models via substitution17,25. The global objective is, from Eq. 3,
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where λ1 = (σε/σg)2 is a regularization parameter. The local objective is from Eq. 3, substituting ss = ̂sg,
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Dictionary learning is added to the local problem (5), by optimizing D:
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The dictionary learning problem (Eq. 6) is here solved using the iterative thresholding and signed k-means 
(ITKM) algorithm30. After D is obtained, the coefficients X = [x̂1, ..., x̂I] are solved from Eq. 5 using orthogonal 
matching pursuit (OMP) with the same sparsity level T as ITKM. Then with X, D, and global slowness ŝg from 
Eq. 4 we solve for ss. Equation 3 gives, assuming constant patch variance σp,i
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where n is the number of patches and = ∑ ˆs R Dxp n i i i
1 T . Equation 8 gives ss as the weighted average of the patch 

slownesses {Dx̂i∀i} and ŝg. When λ2 ≪ n, ss ≈ sp. When λ2 = n, sg and sp have equal weight. It is typical in image 
denoising to set λ2 = 026. The expressions Eq. 4–8 are solved iteratively until convergence. Before solving Eq. 5 and 6, the 
slowness patches {Riŝg∀i} are centered26, i.e. the mean of the pixels in each patch is subtracted. The mean of 
patch i is = ˆx R s1i n i

1 T
g. Hence, Riŝg ≈ Dxi + 1xi. The tomographic image used for geophysical interpretation from 

the LST algorithm is ŝs.
We note that the LST approach performs well for both prescribed (e.g. wavelet and DCT) and learned dic-

tionaries (see Fig. 5). But in general we expect the tomographic image fidelity of the learned dictionary inversion 
to be greater than that of prescribed dictionaries. This follows the results of simulations in15 (e.g. Figures 5, 6, 8 
and 9), which compares the performance of prescribed and wavelet dictionaries on synthetic slowness maps and 
shows learned dictionaries can reduce the RMSE relative to ground truth by greater than 50% over prescribed 
dictionaries. This also follows the “synthesis” (vs. “analysis”) paradigm in image processing, which prefers to learn 
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dictionaries if sufficient training data is available rather than use e.g. wavelet functions which must be justified 
by detailed theoretical analysis for each application. Dictionaries can be learned from a corpus of data, or as was 
done here, from a large number of examples from one imaging scenario. This has proven a successful approach in 
e.g. image restoration16 and medical imaging17. For more details please see25 (pp. 227–246).

Conventional tomography.  We implement conventional tomography using a Bayesian approach33, which 
regularizes the inversion with a global smoothing (non-diagonal) covariance. Considering the measurements (1), 
the MAP estimate of the slowness is

= + ηΣ− −ŝ A A A t( ) , (9)g
T

L
1 1 T

where η = (σε/σc)2 is a regularization parameter, with σc the conventional slowness variance, and

Σ = − .i j l L( , ) exp( / ) (10)i jL ,

Here li,j is the distance between cells i and j, and L is the smoothness length scale33,34. For our simulation we 
choose L = 10 km and η = 100 km2. This gives the best tradeoff between detail and fidelity.

LST, eikonal, and conventional performance comparisons.  We quantify the relative quality of the 
LST and eikonal phase speed maps (Fig. 4) by variance reduction, and using visual quality scores derived from 
natural images. The LST provides a 57% variance reduction and conventional gives 59%, whereas eikonal gives a 
28% reduction. The increased variance reduction in the LST and conventional inversions over the eikonal result 
is likely because the eikonal tomography method does not explicitly minimize the travel time residual. Both LST 
and conventional tomography minimize the travel time residual in their map estimation (Eq. 4 and 9). Since there 
is no true phase speed map available, we use reference-less image quality metrics to help quantify the quality of 
the LST and eikonal phase speeds. While such metrics may not reflect the truth of estimated geophysical fea-
tures, they can help quantify corruption of the geophysical features. We use the Blind/Referenceless Image Spatial 
Quality Evaluator (BRISQUE)35, the Natural Image Quality Evaluator (NIQE)36, and the Perception based Image 
Quality Evaluator (PIQE)37. The results are summarized in Table 1. Overall, LST obtains a better score on 2 of 3 of 
the metrics. The BRISQUE metric has incorporated human opinions of image quality, whereas NIQE and PIQE 
do not. Hence BRISQUE may be less suited to our application.

Since surface wave phase travel times potentially suffer from phase ambiguities, we also performed an LST 
inversion of the 1 Hz Rayleigh wave group travel times using the same parameters as the LST phase speed map 
(Fig. 4A). The LST group speed map is shown in Fig. 6. The group travel times are not subject to phase ambigu-
ities, but may present other problems such as erratic arrival picks. The trends in LST group speed map (Fig. 6) 
compare well with those of the LST phase speed map (Fig. 4A), and both show a large fast anomaly south of the 
NI fault. We note that the group speed is slower overall, than the phase speed map, which is expected.

We compare the results of the LST to eikonal tomography8,38 and conventional tomography (Fig. 4). Eikonal 
tomography avoids the inversion of large tomography matrices in favor of solving a number of simpler subprob-
lems, while also partly accounting for wave refraction. For each virtual source, a phase speed map is estimated 
from the local gradients of the smoothed travel time surface. The individual phase speed estimates from all the 
virtual sources are then averaged to obtain the final phase speed map. Since LST uses the straight ray assumption, 
it is more similar to conventional than eikonal tomography.

However, LST provides improved results over conventional tomography with less computational burden. 
Conventional tomography33 complexity is dominated by square matrix inversion N( )3 , though approximate 
solution methods are slightly less complex. For large tomography matrices A, LST is dominated by matrix multi-
plication in the LSMR algorithm29  MN(2 ). Since for LST the sparse matrix A is used directly, the memory 
required for a tomography problem with M travel times scales linearly with the map size N. For conventional 
tomography, the memory required scales by N2. Hence LST could be used for much larger maps than conven-
tional tomography.

Geological interpretation.  The LST sensitivity depth range (~100–500 m) with 1 Hz Rayleigh surface 
waves is occupied by Pleistocene and Holocene deposits32, which contain almost all the ground water resources 
in the area, Fig. 3A–C. The Silverado formation (Lower Pleistocene age, ~300–580 ka, named in31), accounts for 
nearly 90% of the total ground water extraction in the region considered here39. The producing aquifers consist of 
sand and gravel, and in particular the Silverado unit is characterized by coarse-grained sediments.

Ponti et al.32 generated a 3D sequence stratigraphy model of Quaternary layers at the Dominguez Gap in a 
16.5 × 16.1 km area that overlaps with our LST model region (see Fig. 2). The study was aided by 5 reference bore-
holes drilled to more than 450 m depth. In addition, more than 300 oil and water wells were compiled and used in 
the study. An important finding from this study was a fault, striking W-NW in agreement with the general trend 

Method BRISQUE NIQE PIQE

Conventional 51.2 10.1 88.4

Eikonal 43.7 11.0 86.8

LST 45.8 5.9 72.5

Table 1.  Reference-less image quality score for Conventional, Eikonal, and LST methods with BRISQUE, 
NIQE, and PIQE metrics (lower score is better).
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of the area, named the Pacific Coast Highway (PCH) fault, with a progressive vertical throw (up to 200 m) causing 
displacement of all pre-Holocene formations down to the north (see Fig. 2).

An area-wide gravity survey32 was carried out to invert for stratigraphy along a N-S profile, ~1 km west of 
the LST result region (see Fig. 2). The Silverado aquifer has significantly higher density (2290 kg/m3), due to its 
coarse-grained facies, than the surrounding formations (2050–2100 kg/m3). The Silverado gravity anomaly is in 
general agreement with the sequence-stratigraphic model, including the termination of the Silverado unit just 
south of LBCH. However, the Poland et al.31 survey contradicts the Ponti et al.32 inferred stratigraphy. In31, it is 
concluded that the Silverado is missing about 1 km south of the NI fault - near the termination of the LST phase 
speed anomaly (see Fig. 3).

Several established empirical relations positively correlate seismic wave speeds with density. Gardner et al.40 
relates density ρ to P-wave speed Vp as

ρ = . .V0 31 , (11)p
0 25

where Vp is in m/s. Equation 11 gives a 40–50% increase in Vp for the Silverado formation, over the surrounding 
Pliocene, Pleistocene and Holocene layers. Brocher41 related Vp, Vs by

= . − . + . − . + .V V V V V0 7858 1 2344 0 7949 0 1238 0 0064 , (12)s p p p p
2 3 4

where Vs is in km/s. Equation 12 gives a 150% increase in Vs using derived values of Vp
40 for the densities of the 

Silverado and surrounding layers. Since Rayleigh surface wave phase speed is dependent primarily on Vs
42, these 

results suggest that the Silverado aquifer should give rise to a significant phase-speed anomaly.
To help verify the fast anomaly in the LST result (Fig. 1B), we calculate the 1 Hz Rayleigh surface wave 

phase speed for the survey region based on predicted Silverado Vs from empirical relations Eq. 11 and 12. The 
method and results are summarized in Fig. 7. The Silverado elevation and thickness inferred in32 are interpolated 
(Fig. 7A,B) to obtain the depth ranges of the aquifer within the survey region. It is assumed per31 that Silverado is 
missing south of the fast anomaly. Further, we assume an average Vs profile for the region based on Rayleigh wave 
dispersion measurements in8. For each discrete Silverado depth range, the Silverado Vs is simulated by doubling 
the average Vs in the Silverado depth range (e.g. Fig. 7D). The 1 Hz Rayleigh surface wave phase speed for the 
survey region (Fig. 7C) is estimated using numerical forward modeling43.

We also consider the effect of fluid saturation of the local strata in qualifying the high-velocity anomaly in our 
1 Hz phase map. The depth to the water table in Long Beach (average from 150 wells44) is about 7 m. Below the 
water table, the layers may be considered ‘wet’ to the largest depths in the deep water wells from32 (Pliocene age, 
450 m+), though the layers are not necessarily ‘water-bearing’ per ground water extraction terminology. While 
laboratory experiments have shown for large Vs that the presence of fluids tends to decrease Vs of rock, this trend 
is insignificant for Vs ≈ 1,000 m/s45. The phase speeds observed in the high-velocity anomaly detected in our 
study are within this range. Thus, we conclude it unlikely that the high-velocity anomaly in our 1 Hz phase map is 
caused by a contrast in wet versus dry rock.

Figure 6.  1 Hz Rayleigh surface wave group speed map from LST, estimated using the same inversion 
parameters as the LST phase speed map (Fig. 4A). The group speed map shares the same speed trends as the LST 
phase speed map, including the large fast anomaly south of the NI fault corresponding to the Silverado aquifer. 
The stations (dots) and the valid boundary for LST (red line) are shown.
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Other parameters, such as confining pressure and anisotropy46, as well as temperature47, may affect seismic 
velocities of the individual strata. However, we do not have measurements of these parameters available for the 
layers of our model area. Thus, to the best of our knowledge based on recent literature, the high-velocity anomaly 
in the west-central part of the Long Beach model is caused by the higher-density gravel/coarse sand of the lower 
Pleistocene Silverado aquifer, as supported by gravity inversion and borehole logs32.
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